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Abstract

Many applications of modern science involve a large number of parameters. In many cases,

the number of parameters, p, exceeds the number of observations, N . Classical multivariate statistics

are based on the assumption that the number of parameters is fixed and the number of observations

is large. Many of the classical techniques perform poorly, or are degenerate, in high-dimensional

situations.

In this work, we discuss and develop statistical methods for inference of data in which the

number of parameters exceeds the number of observations. Specifically we look at the problems of

hypothesis testing regarding and the estimation of the covariance matrix.

A new test statistic is developed for testing the hypothesis that the covariance matrix is

proportional to the identity. Simulations show this newly defined test is asymptotically comparable

to those in the literature. Furthermore, it appears to perform better than those in the literature

under certain alternative hypotheses.

A new set of Stein-type shrinkage estimators are introduced for estimating the covariance

matrix in large-dimensions. Simulations show that under the assumption of normality of the data,

the new estimators are comparable to those in the literature. Simulations also indicate the new

estimators perform better than those in the literature in cases of extreme high-dimensions. A data

analysis of DNA microarray data also appears to confirm our results of improved performance in

the case of extreme high-dimensionality.
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Chapter 1

Introduction

Multivariate statistics concerns the analysis of data consisting of more than one measurement

on a number of individuals or objects. We consider the number of measurements to be the dimension

of our analysis, typically denoted with p. The number of observations, N = n + 1, are drawn

randomly from a p-dimensional population, Θ, and are known as the random sample of size N . The

measurements made on a single observation are typically assembled into a column vector, i.e.

xi =



xi1

xi2
...

xip


where i represents the ith, i = 1, . . . , N , observation from the random sample. The set of measure-

ments on all observations in a sample set side-by-side make up a matrix of observations, X such

that,

X =
(

x1 x2 · · · xN

)
and X is a p ×N -matrix. We assume each vector to be from a multivariate population. When an

observation is drawn randomly, we consider the vector to have a set of probability laws describing the

population, known as a distribution. The p-dimensional population is assumed to have a p×1-mean
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vector µ and a p× p-covariance matrix Σ such that

µ =



µ1

µ2

...

µp


, Σ =



σ11 σ12 . . . σ1p

σ12 σ22 . . . σ2p

...
...

. . .
...

σ1p σ2p . . . σpp


where µi = E[xi] and σij = E[(xi − µi)(xj − µj)] for i, j < p. The expectation is defined in the

typical fashion,

E[X] =
∫
xf(x)dx

where f is the distribution function of the random variable X. Σ is positive definite, typically

denoted Σ > 0 and can be expressed using the matrix notation,

Σ = E [(xi − E[xi])(xi − E[xi])′]

where xi
′ denotes the transpose of the p× 1 vector xi.

Many of the classical statistical methods that have been developed and assessed can be put

in the context of the multivariate Normal, or Gaussian, distribution, denoted with xi ∼ Np(µ,Σ).

The probability density function for p×1-dimensional random vector x from the multivariate normal

distribution is defined as,

f(x) = (2π)−
p
2

∣∣∣Σ∣∣∣− 1
2
exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
,

where
∣∣Σ∣∣ denotes the determinant operation on the matrix Σ and

∣∣Σ∣∣ 6= 0 since Σ is positive

definite. Σ−1 is the matrix inverse of Σ and is known as the precision matrix.

The normality assumption can generally be relaxed when applying many of the methods

discussed here, a property known as robustness. Regardless of the assumed distribution, in the clas-

sical case there is the assumption that the number of observations is greater than the dimensionality

of our data, i.e. N > p.
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1.1 Estimation

We are generally interested in the two parameters, the mean vector, µ, and the covariance

matrix, Σ. However each is unknown and must be estimated. The typical estimates are the sample

mean vector, x̄, and sample covariance matrix, S, both from a sample of size N = n+ 1, where

x̄ =



x̄1

x̄2

...

x̄p


with

x̄i =
1
N

N∑
j=1

xij

is the sample mean of the ith covariate. The sample covariance matrix is typically defined as

S =
1

N − 1

N∑
j=1

(xj − x̄)(xj − x̄)′ (1.1)

and S can be written in matrix form

S =
1

N − 1
(X− X̄)(X− X̄)′ (1.2)

where X̄ is a p×N matrix with each column comprised of x̄.

It is well-known that both x̄ and S are based on the maximum likelihood estimators, are

unbiased and consistent, when n → ∞ with p fixed, for µ and Σ respectively. They typically are

considered the best estimators available in the classical statistical case of N > p.

1.2 Hypothesis Testing

Decision making about µ and Σ is generally achieved through likelihood ratio criterion. For

hypothesis test regarding µ this test is based on the T 2-statistic that is

T 2 = N(x̄− µ)′S−1(x̄− µ). (1.3)

3



Tests regarding the covariance matrix are also based on the likelihood ratio criterion. These

test are based on a function of the eigenvalues of the sample covariance matrix. Specific Likelihood

Ratio Tests (LRT) for varying hypothesis are described in Chapter 2. In all the hypothesis testing

thus described, we are assuming the sample size, N , exceeds that of the dimensionality, p. The

consistency of these test and other properties are shown when n → ∞ with p fixed. Details are

provided in many multivariate analysis, asymptotic statistical and mathematical statistical texts,

see Anderson [3], Johnson and Wichern [63], van der Vaart [107], Casella and Berger [14], Rao [81],

Dudewicz and Mishra [27], Lehmann [73] and others.

1.3 Need for new Techniques

Many applications in modern science and economics, (e.g. the analysis of DNA Microarrays,

computer science network programs, portfolio analysis in economics) involve observations where the

number of variables, p, is large. In many cases, the number of variables is of the same, or greater,

magnitude as that of the number of observations, N . The theoretical framework for the classical ap-

proach is restricted to the case where the number of observations grow while the number of variables

stays fixed. Specifically when working with the covariance matrix, new techniques are needed as the

typical methods run into several severe problems in the modern applications. Modern techniques

explore what is known as (n, p)-asymptotics, “general asymptotics,” “concentration asymptotics,”

see Ledoit & Wolf [69], or “increasing dimension asymptotics,” see Serdobolskii [93]. The (n, p)-

asymptotics are a generalization of the classical techniques, however we consider the case where

both n → ∞ and p → ∞. Furthermore, we typically relax restrictions on the dimensionality, as it

can be larger than the sample size.

1.3.1 Estimation in High-Dimensions

The sample covariance matrix, S, defined in (1.1) becomes ill-conditioned or near singular

as the number of variables, p, approaches the number of observations. It is well known that the

eigenvalues of S disperse from the true eigenvalues of Σ. The smallest eigenvalues will go to zero and

the largest will go to ∞ as the dimensionality increases. When p > n, S is singular and the smallest

eigenvalues are zero. In many cases an accurate estimate for Σ, or Σ−1, the precision matrix, is

required. As p approaches N , or even passes it, the typical estimate for Σ becomes degenerate and
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shouldn’t be used.

Typically in high-dimensions, estimation of Σ is achieved by putting some predetermined

structure, such as banding or diagonality, on the estimate for the covariance matrix. This structure

is chosen to be well-conditioned, non-singular and if previous knowledge about the data is available,

should be representative of the true covariance matrix.

Another popular method for estimation of the covariance matrix is that of Stein-type shrink-

age estimation. A convex combination of the sample covariance matrix, S, and some well-conditioned

target matrix is used to estimate the covariance matrix. The idea is to reduce the weight on S and

put more weight on the target matrix when the dimensionality increases. This convex combination

shrinks the eigenvalues of the sample covariance matrix to that of the target matrix. The target

matrix is chosen to be well-conditioned and non-singular. Typically matrices such as the identity

are used, but if previous knowledge of the dataset is known (e.g. stock market returns), a different

target can be designed for that particular dataset.

Since the calculation of S is well-known, and the target is predetermined, the computa-

tional issues associated with Stein-type shrinkage estimation are in determining an appropriate

weight, typically called the shrinkage intensity. Recent work by Ledoit & Wolf [70] [72] shows an

optimal intensity will always exist under the quadratic risk, however this optimal weight must also

be estimated. We recap the estimators from the literature and introduce a new set of shrinkage es-

timators for three common target matrices. The newly suggested estimators are found under fairly

general assumptions and are unbiased like many of those from the literature. A simulation study

and data analysis indicate the newly suggested estimators are comparable to those in the literature,

and appear to perform better in cases of extreme high-dimensions.

1.3.2 Hypothesis Testing in High-Dimensions

As aforementioned, the likelihood ratio criterion is typically used for hypothesis test for the

covariance matrix. In the high-dimensional case, the likelihood ratio criterion fails or is computa-

tionally unstable. The likelihood ratio criterion is based on the eigenvalues of the sample covariance

matrix. As discussed above, when p > n, only the first n eigenvalues will be non-zero. Also, the

smallest eigenvalues will tend to zero pretty quickly as the dimensionality grows. The LRT uses all p

eigenvalues and typically requires calculating the geometric mean of the eigenvalues. The geometric

mean will always result in a value of zero when p > n and will be computationally close to zero
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when p is large with respect to n. Thus, the Likelihood Ratio criterion is unstable and should not

be used in cases of high-dimensions.

Recent work has looked at many of the common hypotheses regarding the covariance matrix

when the dimensionality is large, including: the covariance is the identity, proportional to the identity

(typically called sphericity), the covariance matrix is a diagonal matrix and multiple covariance

matrices are equal.

Our work begins by recapping the new methods for testing if the covariance matrix is a

diagonal matrix. The primary method is to look at the off-diagonal elements of the covariance or

correlation matrix. Under the null hypothesis, the true matrix is diagonal, and we’d expect the

off-diagonal elements of the sample covariance to be zero. A test statistic is constructed based on

these off-diagonal elements. We generalize the results in the literature to the case of a block diagonal

matrix.

We then discuss testing the hypothesis for sphericity of the covariance matrix. Several

test have been introduced in recent years utilizing the first and second arithmetic means of the

eigenvalues of S. We note that unlike the geometric mean, arithmetic means will not be adversely

effected by zero eigenvalues. We develop a new statistic for testing sphericity based on the ratio of

the fourth and second arithmetic means of the eigenvalues of the sample covariance matrix. The

asymptotic distribution of the statistic is found under both the null and alternative hypotheses. The

test statistic is shown to be consistent as both the sample size and dimensionality grow together.

Simulations indicate this new test is asymptotically comparable to those in the literature and that

under a certain class of matrices under the alternative distribution we call near spherical matrices,

the newly defined test appears to be more powerful than those in the literature. Lastly a data

analysis is performed for comparisons with the literature.

Lastly, we explore the results in the literature, as well as discuss how to modify the newly

defined statistic for sphericity, to test the hypothesis that the covariance matrix is the identity. We

note this is a special case of sphericity with proportion one. The idea of these procedures is to utilize

the fact that all eigenvalues will be one under the null hypothesis. Thus, on average, we’d expect

the eigenvalues of the sample covariance to be about one as well. We can look at squared or quartic

difference between the eigenvalues and the theoretical value of one to develop testing procedure to

see if the covariance matrix is the identity.
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1.4 Organization of this Work

Chapter 2 provides a detailed discussion of much of the previous work in the literature

regarding hypothesis testing of the covariance matrix when the dimensionality is large. We introduce

several new testing procedures for multiple hypotheses and provide a simulation study indicating an

improvement in certain situations. Chapter 3 provides a review of the estimation procedures of the

covariance matrix, and introduces several new shrinkage estimators for the covariance matrix. We

note we drop the boldface notation to distinguish vectors and matrices from univariate constants

and random variables.
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Chapter 2

Hypothesis Testing

We discuss advances in hypothesis testing of covariance matrices when the number of obser-

vations is less than the dimensionality of the matrix. This is a common problem in modern genetic

research, medicine and economics. In the classical case, i.e. n > p and n-large, test based on the

likelihood ratio are used. The likelihood ratio test becomes degenerate when p > n. Details will be

provided in the individual sections below.

Much of the current work rests on the large body of literature regarding asymptotics for

eigenvalues of random matrices, specifically the sample covariance matrix, such as Arharov [4], Bai

[5], Narayanaswamy and Raghavarao [76], Girko [47] [45] [46], Serdobolskii [92] [93] [91], Silverstein

[95], Yin and Krishnaiah [112] and others. We build on the substantial list of work completed on

statistical testing in high-dimensions, such as Bai, Krishnaiah, and Zhao [8], Saranadasa [84], Kim

and Press [65], Girko [48] and most recently the work completed by Ledoit and Wolf [69], Srivastava

[99] [100] [97] and Schott [87], [88], [89], [90].

This chapter contains four sections discussing three common hypotheses about the covari-

ance matrix and concluding remarks. We begin by discussing the work completed by Srivastava [99]

and Schott [88] for testing independence of variables in the covariance matrix, i.e. the covariance

matrix is a diagonal matrix. Using the methodology of Srivastava [99] we discuss how to create a

test for block-diagonality of the covariance matrix. In the second section we explore the existing

tests for sphericity of the covariance matrix and develop a new test based on the Cauchy-Schwarz

inequality. Further exploration into the performance of our newly defined test is achieved through a

simulation study and the application of our new test on some microarray data. In the third section
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we discuss the work that has been done on testing that the covariance matrix is the identity. We

conclude with some observations, remarks and discussion of potential future work.

2.1 Testing for an independence structure

Let x1, x2, . . ., xN be iid Np(µ,Σ), sample size N = n + 1. We consider the problem of

testing the hypothesis of complete independence, i.e. H0 : Σ = diag
(
σ2

11, σ
2
22, . . . , σ

2
pp

)
. We begin

by discussing the work of Schott [88] and Srivastava [99].

Schott [87] notes the above hypothesis is equivalent to σij = 0 for all 1 ≤ i < j ≤ p. A

simple and intuitive statistic for testing would be based on the sij ’s from the sample covariance

matrix S. Under the assumptions that the data comes from a multivariate normal distribution,

Schott [87] looks at the sum of squares of the sijs and centralizes to mean zero. He derives

tnp =
p∑
i=2

i−1∑
j=1

(s2
ij −

siisjj
n

) (2.1)

and finds

σ̂2
np =

2(n− 1)
n2(n+ 2)

p∑
i=2

i−1∑
j=1

s2
iis

2
jj (2.2)

is a consistent estimator for the variance of tnp from (2.1). He then shows that t∗np = tnp/σ̂
2
np∼̇N(0, 1)

as (n, p)→∞. In [88] he provides a similar result using the sample correlations.

Srivastava [99] develops a similar test using the sample correlation matrix. Noting that an

equivalent null hypothesis is ρij = 0 when ρij = σij/
√
σiiσjj . We let rij be the sample correlation,

or

rij =
sij√
siisjj

, i 6= j (2.3)

and he constructs a test based on the sum of squares of rijs for all i 6= j. Srivastava [99] [100] shows

as (n, p)→∞

T ∗s =
n
∑p
i<j r

2
ij − q√

2q
∼̇ N(0, 1), (2.4)

where

q =
1
2
p(p− 1).

We build on the idea of independence to the more general case of a block diagonal structure,
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specifically we are interested in testing H0 : Σ = Σ∗ against HA : Σ 6= Σ∗ where

Σ∗ =



Σ11 0 . . . 0

0 Σ22 . . . 0
...

...
. . .

...

0 0 . . . Σkk


, (2.5)

with each Σii being a pi × pi positive definite covariance matrix, for i = 1, . . . , k. In Schott [87], he

provides a generalization of his above result for testing against a block diagonal structure.

We provide a generalization of the result provided by Srivastava [99]. This hypothesis

equates to testing H0 : σij = 0 for all (i, j) off-block diagonals entries, against the alternative

σij 6= 0 for at least one-pair (i, j). Without loss of generality we can consider the hypothesis based

on the correlation, H0 : ρij = 0 versus H1 : ρij 6= 0 for at least one pair (i, j) on the off diagonal

block entries where ρij = σij/(σiiσjj)1/2 for i 6= j. Let rij be the sample correlation coefficient

defined above in (2.3). We define

q = p1p2 + p1p3 + . . .+ p1pk + p2p3 + . . .+ p2pk + . . .+ pk−1pk (2.6)

and

r =
(
r1,p1+1, . . . , r1,p, r2,p1+1, . . . , rp1+...+pk−1,p1+...+pk−1+1, . . . , rp1+...+pk−1,p

)′
. (2.7)

That is, r is a vector of the sample correlations corresponding to the off-block diagonal entries with

length q. Let

ρ = (ρ1,p1+1, ρ1,p1+2, . . . , ρp1+...+pk−1,p)
′ (2.8)

be the corresponding true correlations for the off-block diagonal entries. Under H0, each ρij = 0

and hence ρ is a vector comprised of q zero elements. By Hsu [58],

√
nr ∼ Nq(0,Ω)

where the covariance matrix, Ω, has diagonal elements (1− ρ2
ij)

2 for each i, j in ρ, which equates to

10



1 under H0, and off-diagonal elements given by

cov(rij , rkl) = ρikρjl + ρilρjk − ρij(ρikρil + ρjkρjl)− ρjk(ρikρkl + ρilρjl)

+ 1
2ρijρkl(ρ

2
ik + ρ2

il + ρ2
jk + ρ2

jl). (2.9)

(2.9) can be simplified to

cov(rij , rkl) = ρikρjl + ρilρjk (2.10)

under the null hypothesis.

Lemma 2.1.1.

nr′Ω−1r
D→χ2

q as n→∞

Proof. A common result in Linear Models, see Graybill [50]

Theorem 2.1.1. As n→∞,
nr′Ω−1r − q√

2q
D→N(0, 1).

Proof. An application of the Central Limit Theorem on the asymptotically independent χ2 random

variables provides the result.

Application of Lemma 2.1.1 and Theorem 2.1.1 allows us to test H0 : Σ = Σ∗ vs HA : Σ 6= Σ∗

with the statistic

Z =
nr′Ω̂−1r − q√

2q
(2.11)

where Ω̂ is the consistent estimator of Ω comprised of rijs.

Theorem 2.1.2. As (n, p)→∞, the test statistic, Z D→N(0, 1)

Proof. We provide the general argument for the proof. Each rij → ρij as n→∞, hence Ω̂→ Ω and

Ω̂−1 → Ω−1 by Slutsky’s Theorem and continuous mapping theorem. Whence nr′Ω̂−1r
D→χ2

q. This

argument shows n-consistency and is not based on the behavior of p.

An application of the central limit theorem with respect to p, and hence q, on nr′Ω̂−1r gives

us the result Z = nr′Ω̂−1r−q√
2q

D→N(0, 1) as (n, p)→∞.

Further details for the convergence can be found in Srivastava [100].

11



2.2 Testing for Sphericity

We consider the problem of testing for sphericity of the covariance matrix, or that the

covariance matrix is proportional to the identity matrix. Explicitly written as H0 : Σ = σ2I vs

HA : Σ 6= σ2I, where σ2 is an unknown scalar proportion. As previously discussed, when n > p the

appropriate test is the likelihood ratio test (LRT) defined below in (2.12). It is a test based on the

eigenvalues of the sufficient statistic S. The LRT is

W =


p∏
i=1

l
1/p
i

(1/p)
p∑
i=1

li


p

(2.12)

where li, i = 1, . . . , p, are the eigenvalues of S. From Anderson [3]

P (−nρ logW ≤ z) = P (χ2
f ≤ z) + ω2

(
P (χ2

f+4 ≤ z)− P (χ2
f ≤ z)

)
+O(n−3) (2.13)

where

f =
1
2
p(p+ 1)− 1, (2.14)

ρ = 1− 2p2 + p+ 2
6pn

, (2.15)

ω2 =
(p+ 2)(p− 1)(p− 2)(2p3 + 6p2 + 3p+ 2)

288p2n2ρ2
. (2.16)

The LRT has been shown to have a monotone power function by Carter and Srivastava [13]. The

LRT depends on the geometric mean of the sample eigenvalues. When n < p, the likelihood ratio

test is degenerate since only the first n eigenvalues of the sample covariance matrix will be non-

zero, resulting in a geometric mean of zero. Furthermore, as p ≈ n, S becomes ill-conditioned,

and the eigenvalues disperse from the true eigenvalues. Bai and Yin [7] show the smallest non-zero

eigenvalues will approach a limit close to zero creating an ill-conditioned, or degenerate, test. New

methodology is necessary when the number of variables, p, is of the same order, or larger, as the

number of observations, n.

Ledoit and Wolf [69] show the locally best invariant test based on John’s U statistic [62],

see (2.19), to be (n, p)-consistent when (p/n)→ c <∞ and c is a constant known as the concentra-

12



tion. However the distribution of the test statistic under the alternative hypothesis is not available.

Srivastava [99] proposes a test based on consistent estimators of the trace of powers of Σ. His test,

like that of John, is based on the first and second arithmetic means of the sample eigenvalues but

only requires the more general condition n = O(pδ), 0 < δ ≤ 1. Furthermore, in Srivastava [100]

he proposes a modified version of the LRT in which only the first n eigenvalues are used. This test

is applicable under the assumptions n/p → 0 and n fixed. Motivated by the result in [99] we pro-

pose a test based on consistent estimators of the second and fourth arithmetic means of the sample

eigenvalues.

We begin by highlighting the technical results of the work done in the literature. Under the

assumptions that (p/n)→ c <∞, normality of the data, and finite fourth arithmetic means of the

eigenvalues, Ledoit and Wolf [69] explore John’s U-statistic [62]

U =
1
p

tr

[(
S

(1/p)tr(S)
− I
)2
]

=
(1/p)tr(S2)

[(1/p)tr(S)]2
− 1. (2.17)

They show that as (n, p)→∞

nU − p D→N(1, 4) (2.18)

and hence

UJ =
nU − p− 1

2
D→N(0, 1) as (n, p)→∞. (2.19)

Srivastava [100] proposes an adapted version of the likelihood ratio test when n > p to the

case n < p simply by interchanging n and p. We let

c1 =
(n+ 1)(n− 1)(n+ 2)(2n3 + 6n2 + 3n+ 2)

288n2
,

m1 = p− 2n2 + n+ 2
6n

,

g1 =
1
2
n(n+ 1)− 1,

Q1 = −m1 logL1, (2.20)

where

L1 =

n∏
i=1

li(
1
n

n∑
i=1

li

)n (2.21)
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and li are the eigenvalues of the sample covariance matrix. We note L1 is based on the first n

non-zero eigenvalues of S. Srivastava [100] provides the following result

P (Q1 ≥ z) = P (χ2
g1 ≥ z) + c1m

−2
1

[
P (χ2

g1+4 ≥ z)− P (χ2
g1 ≥ z)

]
+O(m3

1). (2.22)

We next describe the test defined in Srivastava [99] and use it to introduce our newly defined

test. Ledoit and Wolf [69] discuss concerns over John’s U statistic and describe how no unbiased

tests are known for high-dimensional of the form of M(r)/M(t), where M(r) is the rth arithmetic

mean, for r, t > 0. Using this as motivation, we let x1, . . . , xN be iid Np(µ,Σ) and N = n + 1.

The covariance matrix, Σ, is assumed to be a positive definite covariance matrix and µ is the mean

vector. Let ai = (trΣi/p), where Σi is a short notation for the matrix multiplication of i Σs, i.e.

Σ3 = Σ× Σ× Σ. Assume the following,

(A.a) : As p→∞, ai → a0
i , 0 < a0

i <∞, i = 1, . . . , 8.

(B.a) : n = O
(
pδ
)
, 0 ≤ δ ≤ 1,

where O denotes Big-Oh notation.

Like that of the LRT, testing remains invariant under the transformation x→ Gx, where G

is an orthogonal matrix. The test is also invariant under the scalar transformation x→ cx; thus we

may assume without loss of generality Σ = diag(λ1, . . . , λp). From the Cauchy-Schwarz inequality,

it follows that (
p∑
i=1

λri × 1r
)2

≤ p

(
p∑
i=1

λ2r
i

)

with equality holding if and only if λ1 = . . . = λp = λ for constant λ. Thus the ratio

ψr =

(
p∑
i=1

λ2r
i /p

)
(

p∑
i=1

λri /p

)2 ≥ 1 (2.23)

with equality holding if and only if λi = λ, some constant λ, for all i = 1, . . . , p. Thus, we may

consider testing H0 : ψr = 1 vs HA : ψr > 1. We note this test is based on the ratio of arithmetic

means of the sample eigenvalues.
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Srivastava [99] considers the case where r = 1 and finds

ψ̂1 =
n2

(n− 1)(n+ 2)
1
p

[
trS2 − 1

n
(trS)2

]
/(trS/p)2 =

â2

â2
1

(2.24)

and provides the distribution under the null and alternative hypothesis of the test statistic under

the two assumptions (A.a) and (B.a). We summarize his results from [99].

Theorem 2.2.1. Under assumptions (A.a) and (B.a), as (n, p)→∞ asymptotically

(n
2

)( â2

â2
1

− ψ1

)
D→N(0, ξ2

1)

where

ξ2
1 =

2n(a4a
2
1 − 2a1a2a3 + a2

2)
pa6

1

+
a2

2

a4
1

. (2.25)

Corollary 2.2.1. Under the null hypothesis that ψ1 = 1, ξ2
1 = 1 and under assumptions (A.a) and

(B.a), as (n, p)→∞

Ts =
n

2

(
â2

â2
1

− 1
)

D→N(0, 1) (2.26)

Results for the simulated attained significance level, or size, and power are provided in [100]

and in our analysis below.

We construct a consistent test in the case of r = 2 to compare with the test results provided

in the literature. Consider the adapted assumptions similar to that of Srivastava [99] and Ledoit

and Wolf [69],

(A) : As p→∞, ai → a0
i , 0 < a0

i <∞, i = 1, . . . , 16,

(B) : As n, p→∞, p
n
→ c where 0 < c <∞.

Consider the following constants

b = − 4
n
, (2.27)

c∗ = −2n2 + 3n− 6)
n(n2 + n+ 2)

, (2.28)

15



d =
2(5n+ 6)

n(n2 + n+ 2)
, (2.29)

e = − 5n+ 6
n2(n2 + n+ 2)

, (2.30)

and

τ =
n5(n2 + n+ 2)

(n+ 1)(n+ 2)(n+ 4)(n+ 6)(n− 1)(n− 2)(n− 3)
. (2.31)

Theorem 2.2.2. An unbiased and (n, p)-consistent estimator of a4 =
∑p
i=1 λ

4
i /p is given by

â4 =
τ

p

[
trS4 + b · trS3trS + c∗ · (trS2)2 + d · trS2(trS)2 + e · (trS)4

]
. (2.32)

Proof. The result is provided in Theorems A.2 and A.3 in the Appendix.

Thus an (n, p)-consistent estimator for ψ2 is given by

ψ̂2 =
â4

â2
2

where

â2 =
n2

(n− 1)(n+ 2)
1
p

[
trS2 − 1

n
(trS)2

]
(2.33)

is provided in Srivastava [99]. The derivation and justification for our estimator is provided in the

Appendix.

Theorem 2.2.3. Under assumptions (A) and (B), as (n, p)→∞

(
n√

8(8 + 12c+ c2)

)(
â4

â2
2

− ψ2

)
D→N(0, ξ2

2)

where

ξ2
2 =

1
(8 + 12c+ c2)a6

2

(4
c
a3

4 −
8
c
a4a2a6 − 4a4a2a

2
3 +

4
c
a2

2a8 + 4a6a
3
2 (2.34)

+8a2
2a5a3 + 4ca4a

4
2 + 8ca2

3a
3
2 + c2a6

2

)

Proof. The result is provided in Theorem A.13 in the Appendix.
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p = cn c = 1 c = 2 c = 4 c = 5
n = 25 0.036 0.040 0.050 0.056
n = 50 0.050 0.061 0.050 0.058
n = 100 0.060 0.052 0.048 0.054
n = 150 0.049 0.048 0.049 0.047
n = 200 0.047 0.055 0.057 0.051

Table 2.1: ASL for T in (2.35)

p = cn c = 1 c = 2 c = 4 c = 5
n = 25 0.050 0.067 0.057 0.057
n = 50 0.055 0.049 0.051 0.053
n = 100 0.057 0.053 0.056 0.060
n = 150 0.054 0.046 0.050 0.040
n = 200 0.041 0.043 0.052 0.042

Table 2.2: ASL for Ts (2.26)

Corollary 2.2.2. Under the null hypothesis, ψ2 = 1, and under the assumptions (A) and (B), as

(n, p)→∞

T =

(
n√

8(8 + 12c+ c2)

)(
â4

â2
2

− 1
)

D→N(0, 1) (2.35)

Proof. The result is provided in Corollary A.2 in the appendix.

Theorem 2.2.4. Under assumptions (A) and (B), as (n, p)→∞ the test T is (n, p)-consistent.

Proof. See Theorem A.14 in the appendix.

2.2.1 Simulation Study

We provide a simulation study to show the effectiveness of our test statistic. We first provide

a study to test the normality of our test statistic. We look at the Attained Significance Level (ASL),

or simulated size, as well as the QQ-Plot for Normality. We first draw an independent sample of

size N = n+ 1 from a valid null distribution (λ = 1). We replicate this 1000 times. Letting

T =

(
n√

8(8 + 12c+ c2)

)(
â4

â2
2

− 1
)

we calculate

ASL(T ) =
(#T > zα)

1000

denoting the ASL of T where zα is the upper 100α% critical point of the standard normal distribution.

We test with α = 0.05. Table 2.1 and 2.2 provide the results for an assortment of c = p
n values for

both our test statistic, and that of Srivastava [99] since it is most similar to our test in construction.

Ledoit and Wolf [69] and Srivastava [100] provide analogous results for the UJ and Q1 test statistics

in (2.19) and (2.20), respectively.

We see the resulting ASL values are comparable between the two tests, and appear to be
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Figure 2.1: Normal QQ-Plot for T in (2.35) under H0

approximately normal, particularly when the sample size increases. Next we further confirm the

normality result of our test statistic through a series of QQ-Plots. We look at the case of c = 2

so p = 2n. We draw a random sample of size N = n + 1 under the null distribution with λ = 1,

replicate 500 times and plot the Normal QQ plot for the 500 observed values of T . We repeat the

task for n = 25, 50, 100, 200 with respective values of p. The results are in Figure 2.1.

We see from Figure 2.1 that the test statistic defined in (2.35) appears to be normal as

(n, p) → ∞ under assumptions (A) and (B). We repeat the same simulation under the alternative

distribution with Σ = Λ with Λ as a diagonal matrix with eigenvalues that are Unif(0.5, 1.5). Figure

2.2 provides the results. We see from those QQ-Plots that under assumptions (A) and (B) and an
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Figure 2.2: Normal QQ-Plot for T in (2.35) under HA

alternative hypothesis, the normality result appears to be confirmed as (n, p)→∞.

We next conduct a series of power simulations. From Theorem 2.2.4, the power of our test

should converge to 1 as (n, p) → ∞ under assumptions (A) and (B). To make comparisons with

Srivastava [100] we perform a similar test. We first carry out a simulation to obtain the critical

point of our test statistic and that of Srivastava. We sample m = 1000 observations under H0 of

our test statistic and find Tα such that

P (T > Tα) = α.
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p = cn c = 1 c = 2 c = 4 c = 5
n = 25 0.149 0.152 0.108 0.105
n = 50 0.308 0.220 0.139 0.140
n = 100 0.778 0.631 0.371 0.259
n = 150 0.955 0.848 0.504 0.434
n = 200 0.997 0.946 0.724 0.594
n = 300 1.000 0.999 0.956 0.937

Table 2.3: Simulated Power for T in (2.35)
under Σ = Λ ∼ Unif(0.5, 1.5)

p = cn c = 1 c = 2 c = 4 c = 5
n = 25 0.317 0.274 0.274 0.317
n = 50 0.677 0.744 0.736 0.675
n = 100 0.987 0.996 0.990 0.995
n = 150 1.000 1.000 1.000 1.000
n = 200 1.000 1.000 1.000 1.000
n = 300 1.000 1.000 1.000 1.000

Table 2.4: Simulated Power for Ts in (2.26)
under Σ = Λ ∼ Unif(0.5, 1.5)

p = cn c = 1 c = 2 c = 4 c = 5
n = 25 0.410 0.368 0.214 0.225
n = 50 0.849 0.676 0.402 0.358
n = 100 1.000 0.993 0.868 0.760
n = 150 1.000 1.000 0.986 0.958
n = 200 1.000 1.000 1.000 0.999

Table 2.5: Simulated Power for T in (2.35)
under Σ = Λ ∼ Unif(0.5, 10.5)

p = cn c = 1 c = 2 c = 4 c = 5
n = 25 0.974 0.970 0.962 0.975
n = 50 1.000 1.000 1.000 1.000
n = 100 1.000 1.000 1.000 1.000
n = 150 1.000 1.000 1.000 1.000
n = 200 1.000 1.000 1.000 1.000

Table 2.6: Simulated Power for Ts in (2.26)
under Σ = Λ ∼ Unif(0.5, 10.5)

Tα is the estimated critical point at significance level α. We then simulate again with sample size

N = n+ 1 drawn from Np(0,Λ) where Λ = diag(λ1, . . . , λp). For comparison to [100] the values of

λi are obtained by taking p iid random observations from the uniform distribution over the domain

(0.5, 1.5). The sample is replicated m = 1000 times and the percentage of times the statistic T

exceeds Tα is recorded as the simulated power for the statistic. Tables 2.3 and 2.4 provide results

for both our test statistic and that defined in Srivastava [99].

We see from tables 2.3 and 2.4 that both test statistics appear to be consistent as (n, p)→∞

under assumptions (A) and (B). We then can conclude the two tests appear to be asymptotically

comparable as (n, p) → ∞. It does appear the power of the test defined in Srivastava converges

quicker to 1. Discussion of this and other performance behavior is left for the Remarks section below.

We also look at a similar power simulation with the eigenvalues λi as Uniform random variables over

the domain (0.5, 10.5). The results are provided in Tables 2.5 and 2.6. These tables show that when

the diagonal entries of the covariance matrix have a greater range, in both test, the power converges

to 1 quicker.

We next note that both (2.26) and (2.35) are approximately Z-test for large n and p. We

further note that if
a4

a2
2

> 1 +
√

2(8 + 12c+ c2)
(
a2

a2
1

− 1
)
, (2.36)
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p = cn c = 1, φ = 3 c = 2, φ = 4
n = 25 0.505 0.580
n = 50 0.647 0.750
n = 100 0.794 0.901
n = 150 0.858 0.938
n = 200 0.903 0.969

Table 2.7: Simulated Power for T in (2.35)
under near Spherical Covariance Matrix

p = cn c = 1,φ = 3 c = 2,φ = 4
n = 25 0.427 0.463
n = 50 0.489 0.599
n = 100 0.529 0.641
n = 150 0.565 0.680
n = 200 0.624 0.710

Table 2.8: Simulated Power for Ts in (2.26)
under near Spherical Covariance Matrix

the test defined in (2.35) should be more powerful than that described in (2.26). One such case is

that of a near spherical covariance matrix, i.e. covariance matrices of the form

Σ = σ2



φ 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1


, (2.37)

where σ2 is the unknown proportion and φ is a non-one constant. In general, we can assume the

covariance to be the identity with the exception of one element, φ 6= 1. We perform a power

simulation on near spherical matrices as defined in (2.37). The results in Tables 2.7 and 2.8 suggest

our test statistic is more powerful than that described in Srivastava [99] for these near spherical

matrices.

2.2.2 Data Examples

In this section, for further comparison we test the hypothesis of sphericity against the

following classic data sets.

2.2.2.1 Colon Datasets

In this dataset, expression levels of 6500 human genes are measured using Affymetrix mi-

croarray technology on 40 tumors and 22 normal colon tissues. A selection of 2000 genes with the

highest minimal intensity across the samples has been made by Alon, Barkai, Notterman, Gishdag-

ger, Mack and Levine [2]. Our dimensionality, p = 2000 and the degrees of freedom available

to estimate the covariance matrix is only 60. The data is further described and is available at

“http://microarray.princeton.edu/oncology/affydata/index.html”. A base-10 logarithmic
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transformation is applied.

2.2.2.2 Leukemia Datasets

This dataset contains gene expression levels of 72 patients either suffering from acute lym-

phoblastic leukemia (ALL) or acute myeloid leukemia (AML). There are 47 and 25 patients for each

respective case and they are obtained on Affymetric oligonucleotide microarrays. The data is at-

tributed to Golub, Slonim, Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing, Caligiuri,

Bloomfield, and Lander [49]. We follow the preprocessing protocol attributed to Dudoit, Fridlyand,

and Speed [28] and Dettling and Bühlmann [24] by a thresholding, filtering, a logarithmic transfor-

mation but do not follow standardization as to compare to the results in Srivastava [100]. The data

is finally comprised of p = 3571 genes and the degrees of freedom available is only 70. The data is

available and described further at “http://www.broad.mit.edu/science/data”.

2.2.2.3 Test Performance

Both sets of the preprocessed data are available at the website of Prof. Tatsuya Kubokawa,

see “http://www.e.u-tokyo.ac.jp/~tatsuya/index.html”. In each of the datasets, we treat them

as two samples. In the colon data, we assume

Xtumor ∼ N(µtumor,Σ), (2.38)

Xtissue ∼ N(µtissue,Σ). (2.39)

We treat each sample individually, centralizing each Xtumor and Xtissue by their respective sample

means. We then combine back into one sample of size N = 62 and computing the sample covariance

matrix S with n = 60 degrees of freedom. We note this is equivalent to treating each of the samples

individually and finding the pooled covariance matrix as an estimate for Σ.

For the colon data, we get test values of T = 185.8071, Ts = 2771.6538, Q1 = 82086.3214

and UJ = 2816.2916 for (2.35), (2.26), (2.20) and (2.19) respectively. The leukemia data is treated

the same way (as two samples, with n = 70 degrees of freedom) and we get the value observed

test values T = 242.4386, Ts = 2294.9184, Q1 = 86120.8290 and UJ = 2326.7520 for (2.35), (2.26),

(2.20) and (2.19) respectively. We note in each case we get a p-value=0 indicating any assumption

of sphericity in the case of these datasets to be false.
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2.2.3 Remarks and further Development

We have proposed a new test for sphericity of the covariance matrix. Like that of Srivastava

[99], our test is based on the Cauchy-Schwartz inequality. Unlike John’s U-statistic and Srivastava’s

Ts test, we look at the second and fourth arithmetic means of the sample eigenvalues, as compared

to the first and second. The newly defined test statistic T (2.35) appears to perform better in some

near spherical cases and is asymptotically comparable.

2.2.3.1 Changes in Assumptions

Of all the test discussed, the test discussed in [99] has the weakest assumptions in terms

of the growth of p and n. Srivastava simply requires n = O(pδ) for some 0 < δ ≤ 1. Our newly

defined test, and that of Ledoit and Wolf [69], require p/n → c, for some finite concentration such

that 0 < c <∞. Although this is a stricter assumption, we note that in practice the concentration

c is easily estimated by p/n. For example, in both of the analyzed data sets, c is approximated by

2000/60 = 33.333 and 3571/70 = 51.01428 respectively for the colon and leukemia datasets. The

concentration is required for the asymptotic result but should not hinder any application of these

test statistics.

The U-test of John only requires convergence of the fourth arithmetic mean of the eigenvalues

of Σ. The test described in Srivastava [99] requires convergence of the eighth arithmetic mean. We

require convergence up to the sixteenth arithmetic mean. We found no violations of this assumption

during preliminary simulation tests, however we note convergence of higher order means may be

infeasible in certain problems.

2.2.3.2 Limitations

We discovered several limitations in the test defined in (2.35) and, in general, tests of the

form (2.23). When r is limited to the positive integers, as r increases, we require higher and higher

arithmetic means of eigenvalues to converge. At r = 1, Srivastava [99] requires up to the eighth

arithmetic mean to converge. At r = 2, we require up to the sixteenth. Continuing with this

methodology, a test based on r = 3 would require up to the thirty-second arithmetic mean to

converge. It can easily be seen that as r increases, the assumption of the convergence in arithmetic

mean may become infeasible.
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We further note the increase in the variance of our test statistic, compared to that of

Srivastava [99]. As we look at higher arithmetic means, the variance of our test statistic increases.

This can seen as (2.25) < (2.34) in general. The power of the test defined in (2.35) appears to

converge slower than that described in [99]. Although the two test are asymptotically equivalent,

and the newly defined test in (2.35) appears to outperform that of Srivastava in near spherical cases

of Σ, the larger variance of T may be a problem in certain cases.

2.2.3.3 Future Work and Recommendations

We have defined a new test of the form (2.23) with r = 2. This builds upon the work of

Srivastava who defined a test based on r = 1. Future work may look at r = 3, 4, . . .. We conjecture

that these test will be more powerful than that already defined in certain cases of Σ, however we

also note these test will make more restrictive assumptions and the variance of the test statistic will

grow to the point where it may be infeasible to use the statistic. In the case of r being a fraction,

e.g. r = 0.5, we suspect the test may be more powerful in some cases of Σ and in general will not be

hindered by assumptions and a large variance. However, the distribution of terms like a 1
2

is difficult

to determine and we leave this question open.

Although each of the test described is asymptotically equivalent, each test seems to perform

better under certain circumstances. We recommend our newly defined test, T (2.35), when a near

spherical covariance matrix is suspected. In general, the test of [99] or that based on John’s U

statistics as defined in Ledoit and Wolf [69], do not appear to be hindered by larger variance terms

and are comparable in performance.

2.3 Testing for Identity Covariance Matrix

We now explore the results in the literature, namely Ledoit and Wolf [69] and Srivastava [99]

[100], in testing whether the covariance matrix equals a p× p identity matrix, i.e. H0 : Σ = I versus

HA : Σ 6= I. We note this is a special case of the sphericity test when σ2 = 1. Under the classical

n-asymptotics we typically will look at the test statistic based on the likelihood ratio criteria that

can be found in Anderson [3], et. al. Let,

λ∗1 = e
1
2pn

(
|S|e−tr(S)

) 1
2n

(2.40)
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and the distribution, as n→∞, can be found by

P (−2ρ log λ∗1 ≤ x) = P (χ2
f ≤ z) +

γ2

ρ2N2

(
P (χ2

f+4 ≤ z)− P (χ2
f ≤ z)

)
+O(N−3) (2.41)

where

ρ = 1− 2p2 + 3p− 1
6N(p+ 1)

,

γ2 =
p(2p4 + 6p3 + p2 − 12p− 13)

288(p+ 1)
,

f =
1
2
p(p+ 1).

Nagao proposes an invariant test based on the eigenvalues of S. Consider,

V =
1
p

tr
[
(S − I)2

]
(2.42)

which Nagao [75] derived from John’s U statistic for the case of Σ = I. He shows under the null

hypothesis, as n→∞, V has a limiting χ2-distribution with 1
2p(p+ 1) degrees of freedom.

Ledoit and Wolf [69] propose a test statistic based on V that has desirable (n, p)-asymptotic

properties. Let

W =
1
p

tr
[
(S − I)2

]
− p

n

[
1
p

tr(S)
]2

+
p

n
. (2.43)

Under the same assumptions as for the convergence of the U statistic, namely p/n → c < ∞,

normality of the data, and convergence of the third and fourth arithmetic means of the eigenvalues

of Σ, they show under the null hypothesis of Σ = I,

nW − p− 1
2

D→N(0, 1) as (n, p)→∞. (2.44)

They show the test based on W to be equivalent to Nagao’s test based on V in the classical n-

consistency sense. We note that the distribution under the alternative hypothesis is unavailable.

Birke and Dette [11] look at the test statistics studied by Ledoit and Wolf [69] and study the

behavor when c→ 0 or c→∞.

Srivastava [100] proposes a test based on the modified likelihood ratio test except under the
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case when n < p, consider

L2 =
(
e

p

) 1
2pn

(
n∏
i=1

l̃i

) 1
2p

e

1
2

n∑
i=1

l̃i
(2.45)

where l̃i are the eigenvalues of nS. Let

g2 =
1
2
n(n+ 1),

m2 = p− 2n2 + 3n+ 1
6(n+ 1)

,

c2 =
n

288(n+ 1)
(2n4 + 6n3 + n2 − 12n− 13),

Q2 = −
(

2m2

p

)
logL2.

Srivastava shows under the null hypothesis Σ = I, when n/p→ 0, the asymptotic distribution of Q2

is given by

P (Q2 ≥ z) = P (χ2
g2 ≥ z) + c2m

−2
2

(
P (χ2

g2+4 ≥ z)− P (χ2
g2 ≥ z)

)
+O(m−3

2 ). (2.46)

In Srivastava [99], he proposes a test based on the sum of the eigenvalues, if λi = 1 for all

i, then
1
p

p∑
i=1

(λi − 1)2 = 0

thus

1
p

p∑
i=1

(λi − 1)2 =
1
p

[
p∑
i=1

λ2
i − 2

p∑
i=1

λi + p

]

=
1
p

[
trΣ2 − 2trΣ + p

]
= a2 − 2a1 + 1 = 0

where a2 and a1 are defined as the second and first arithmetical means of the eigenvalues of Σ. As

previously discussed in Section 2.2, Srivastava finds (n, p)-consistent estimators for a2 and a1, see

(2.33) and Srivastava [99]. Under the assumptions (A.a) and (B.a) from Section 2.2, he derives the

distribution of the test statistic

T ∗∗s = â2 − 2â1 + 1, (2.47)
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as (n
2

)
(T ∗∗s − (a2 − 2a1)− 1) D→N(0, ξ2

∗),

where

ξ2
∗ =

2n
p

(a2 − 2a3 + a4) + a2
2

as (n, p)→∞. Under the null hypothesis, as (n, p)→∞

(n
2

)
T ∗∗s

D→N(0, 1).

The test based on T ∗∗s is a one-sided Z-test for large (n, p).

We note that using methodology similar to that of Section 2.2, we can propose a new test

based on,

1
p

p∑
i=1

(λ2
i − 1)2 =

1
p

[
p∑
i=1

λ4
i − 2

p∑
i=1

λ2
i + p

]

=
1
p

[
trΣ4 − 2trΣ2 + p

]
= a4 − 2a2 + 1 = 0.

Consistent estimators of a4 and a2 are derived in the section on Sphericity. However it was noted

that the variance term for â4 is quite large, and can hinder the performance of our newly defined

test statistic. However, that test seemed appropriate in the case of near spherical covariance ma-

trices. The same methodology can be implemented here to define a new test statistic, however we

question whether there will be any statistical advantage in this newly defined test. Additional work

is necessary to determine if test-statistics involving the fourth, or other arithmetic, means of the

sample eigenvalues should be pursued.

2.4 Concluding Remarks

In this work, we have studied three common hypothesis tests for the covariance matrix in

the framework of general asymptotics. We began by highlighting the previous work in the literature

describing test for complete independence, or that the covariance matrix has a diagonal structure.

We proposed a generalization of the test Srivastava [99] proposed based on the sample correlation
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matrix. We highlighted the work completed on testing for sphericity of the covariance matrix, and

proposed a new test based on the fourth and second arithmetic means of the eigenvalues of Σ.

Monte Carlo simulations confirm our asymptotic results and we apply the newly defined test against

large dimensional microarray data. Our newly defined test is comparable to that in the literature

and appears to perform better when the covariance matrix has a near spherical structure. Lastly

we study the existing test for an Identity covariance matrix and discuss a proposal for a new test

based on the fourth and second arithmetic mean. The distribution under the alternative and null

hypothesis can be explicitly calculated using the methodology described in the Appendix. Due to

the high variance of our unbiased and consistent estimator of a4, at this time, we cannot justify the

construction of such a test. Future work may explore the usefulness of a test based on the fourth and

second arithmetic moments. Lastly we note a key contribution of this work and that of Srivastava

[99]: Unlike the previous work, the asymptotic alternative distribution is available for the sphericity

test and identity test defined.

Directions for future work include: exploration into test statistics involving higher order

arithmetic means for sphericity and identity, searching for the most powerful tests (within specific

alternative frameworks, e.g. near spherical), relaxing the normality assumption, exploration of the

rate of convergence.
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Chapter 3

Estimation

We discuss the advances in the estimation of the covariance matrix Σ. We begin by de-

scribing the classical approach and its limitations. Typically, Σ is estimated with its empirical

counterpart, the sample covariance matrix (1.2). Given a sample of size N = n + 1 and dimension

p, we find

S =
1
n

(X − X̄)(X − X̄)′

where we have dropped the bold notation indicating matrices. S is a p × p semi-positive definite

matrix. If n > p, S is positive definite with probability 1, and hence is nonsingular. S is based on

the maximum likelihood estimator and is unbiased for Σ. In this classical case, S is also consistent

for Σ as n→∞ with p fixed. The eigenvalues of S are good estimates of the eigenvalues of Σ. Since

S is nonsingular, S−1 can be used to estimate the precision matrix Σ−1. In the classical case, S is

typically considered the best estimator for Σ.

Although S has several desirable properties, in practice the sample covariance matrix has

some limitations. In many applications an estimator for the precision matrix is needed. When

p > n, S is singular and cannot be inverted. As n ≈ p, S becomes ill-conditioned and near-singular.

Furthermore as p → n or p > n, the eigenvalues of S disperse from the true eigenvalues of Σ, see

Ledoit and Wolf [72], Schäfer and Strimmer [85], Bai, Silverstein and Yin [6], Bai and Yin [7], Bickel

and Levina [10] and others for details of sample eigenvalue dispersion. In many applications of

modern statistical methods, such as economics, portfolio selection (Ledoit and Wolf [70] [71], Frost

and Savarino [41], Jorion [64]), clustering of genes from microarray data (Eisen, et al. [36]), gene
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association networks (Toh and Horimoto [105], Dobra et al. [26]) and other applications where the

dimensionality is large, an accurate estimate of the covariance matrix or precision matrix is needed.

Besides an increase in efficiency and accuracy, it would be desirable that estimates of the covariance

matrix (and precision matrix) should exhibit two characteristics not always found in S: they should

be (1) positive definite and (2) well-conditioned.

3.1 Estimation Techniques

In the contents of estimating the mean vector of a multivariate normal distribution, Stein

[101] demonstrated that we can improve upon the maximum likelihood estimator when the dimen-

sionality, p, is non-negligible. Stein [102] and James and Stein [61] explore the idea of improving

upon the MLE further. More insight into the so called “Stein-phenomenon” or “Stein-affect” on the

performance of the MLE is provided in Efron [32].

We will highlight some of the historical approaches used to improve estimation of the covari-

ance matrix. Stein [103] proposes an estimator that keeps the eigenvectors of the sample covariance

matrix but replaces its eigenvalues. Isotonic regression is applied before recombining the corrected

eigenvalues with the eigenvectors to ensure they are positive. Dey and Srinavasan [25] derive an es-

timator that is minimax under certain loss functions. It scales the sample eigenvalues by a constant.

Haff [51] [54] introduced a new type of estimator for the precision matrix based on two different loss

functions based on an identity for Wishart distribution [52] [55]. Efron and Morris [34] and Yang

and Berger [111] use a Bayesian approach to estimate the precision matrix and covariance matrix,

respectively. The list of literature that much of the current work is indebted cannot be justly sum-

marized here. The basic technique was to reduce L(Σ̂,Σ) (or L(Σ̂−1,Σ−1)), for some loss-function

L, compared to L(S,Σ) (or L(S−1,Σ−1)), and find an appropriate estimator meeting the reduction

criterion. Various loss functions and methodology have been explored and the work continues. We

now explore some of the more recent advances.

We briefly describe some of the work that does not fall into the “shrinkage” realm. Most

of these techniques assume some structure in the true covariance matrix and exploit it for a better

estimator.

Eaton and Olkin [30], Pourahmadi [77] [78] [79], Pourahmadi, Daniels and Park [80], Huang,

Liu, Pourahmadi and Liu [60], Chen and Dunson [18], Roverato [82] and Smith and Kohn [96] use a

30



Cholesky decomposition approach where they decompose the covariance matrix. The decomposed

model is then estimated using one of several methods: maximum likelihood, a penalized likelihood

approach, simultaneous estimation, minimizing of a risk function, a Bayesian approach, or iterative

techniques such as expectation-maximization.

Fan, Fan and Lv [37] assume the covariance to follow the form of a factor model and find an

appropriate estimator using multivariate factor analysis techniques. Chaudhuri, Drton and Richard-

son [16] provide an algorithm for computing the maximum likelihood estimate for the covariance

matrix under the constraint that certain covariance terms are zero. Cao and Bouman [12] estimate

Σ based on the modeling assumption that the eigenvalues of Σ are represented by a sparse matrix

transform. Bickel and Levina [10] assume banding, or tapering, of the covariance matrix. They

constrain the estimator for Σ and Σ−1 by banding it. The level of banding, or tapering, is chosen by

minimizing the risk with respect to the L2 matrix norm. Werner, Jansson and Stoica [109] estimate

covariance matrices when they are assumed to have a Kronecker product structure, which is com-

mon in wireless communication channels and signal processing. Furrer [42] estimates the covariance

matrix of a correlated multivariate spatial process. Furrer and Bengtsson [43] provide estimators for

the covariance matrix based on Monte-Carlo Kalman filter variants.

Several authors explore estimation of the covariance matrix with applications to longitudinal

data. Wu and Pourahmadi [110] propose a nonparametric estimator for the covariance matrix.

Huang, Liu and Liu [59] propose a estimator for the covariance matrix based on a smoothing-based

regulation and the use of the modified Cholesky-decomposition. Pourahmadi [77] explores joint

mean-variance models. Fan and Wu [38] propose a semiparametric technique where the variance

function is estimated nonparametrically and the correlation function is parametrically estimated.

Daniels [20] and Daniels and Pourahmadi [23] use a Bayesian approach by exploring various priors

for dependent data. Sun, Zhang and Tong [104] propose a random effect varying-coefficient model

and propose an estimation procedure for the model.

Kubokawa and Srivastava [68] estimate the precision matrix under different loss functions

utilizing the Moore-Penrose inverse of the sample covariance matrix by establishing a Stein-Haff

identity for the singular Wishart distribution. Tsukuma and Konno [106] estimate the precision

matrix by adapting several estimates for the covariance matrix under the squared loss function.

Champion [15] derives empirical Bayes estimators of normal variances and covariances using

an inverse Wishart prior and the Kullback-Leibler distance for loss. Haff [56] provides a general rep-
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resentation for the formal Bayes estimator of the mean vector and covariance matrix by minimizing

the formal Bayes risk. Daniels [21] proposes several estimators of the covariance matrix based on

several common Bayesian regression models.

Hemmerle and Hartley [57] show how to compute the objective function and its derivatives

for the maximum likelihood estimation of variance components. This work was later extended by

Corbeil and Searle [19] for restricted maximum likelihood estimation. Fellner [39] discusses the use

of sparge martrices in expectation-maximization algorithms. Fraley and Burns [40] show how to

compute the likelihood functions and derivatives via sparse matrix methods, generalizing the overall

results.

This highlights some of the recent advances in estimation of the covariance matrix and

precision matrix. However, we have ignored an entire class of estimators for the covariance matrix,

and the precision matrix, typically called “Stein-Type” shrinkage, or just Shrinkage estimators.

These are discussed in the next section.

3.2 Stein-Type Shrinkage Estimators

A common approach to improve the estimator of the covariance is that of “shrinking”

or “biased estimation”. This was explored extensively by Efron [31] and Efron and Morris [33]

[35]. Kubokawa [67] provides a review on the subject. We begin by recalling the bias-variance

decomposition of the mean squared error for the sample covariance,

MSE(S) = Bias(S)2 + Var(S). (3.1)

For the sample covariance matrix, S, the bias is zero, hence the only way to improve on the accuracy

of S is by reducing its variance. The basic idea of a shrinkage estimator is a trade-off between the

error due to bias and the error due to variance. The error due to S is all variance. By introducing

a biased estimator, we can actually reduce the variance and improve the mean squared error of our

estimator. This is the central idea to the James and Stein [61] approach. We consider a convex

combination of the empirical sample covariance matrix with that of a target matrix,

λT + (1− λ)S, (3.2)
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where λ ∈ [0, 1] is known as the shrinkage intensity and T is a shrinkage target matrix. T is chosen

to have several properties we want in our estimator. T should be structured, positive definite,

well-conditioned and represent the true covariance matrix for our application. We note that S is

unbiased but with high variance, and T will be biased, but with its well-defined structure will have

low (or possibly no) variance due to the number of free parameters. The intensity λ is then found

to produce an estimator to improve on the estimator S. If n is large compared to p, S will have a

smaller variance and should be a good estimator, hence λ → 0. Likewise, if p is large, S will have

a greater variance, and more weight should be applied to the target, i.e. λ → 1. Historically, λ is

chosen via a bootstrap method, cross-validation, or Markov Chain Monte Carlo (MCMC) methods.

The shrinkage approach can be applied to any estimator for a parameter. Ghosh, Mergel and

Datta [44] study the Stein-phenomonom when looking at the mean. Warton [108] shrinks the sample

correlation matrix, R, to the identity matrix by maximizing cross-validation. Daniels and Kass [22]

use a Bayesian approach and shrink the correlations and perform a Givens rotation to produce a

shrinkage estimator for the covariance matrix. Barnard, McCulloch and Meng [9] model a covariance

matrix in terms of its corresponding standard deviations and correlation matrix. Several choices for

priors are presented and a straightforward computational strategy is presented for obtaining the

posterior of the covariance matrix. Srivastava and Bilodeau [98] propose a Stein-estimator for the

least squares regressors in the general linear regression model. Kubokawa [66] performs a double

shrinkage algorithm on the regression estimators in generalized least squares. Ahmed [1] looks at a

Stein-type shrinkage estimator for the eigenvalues of the covariance matrix.

In the remainder of this chapter, we extensively work with shrinkage estimators of the

covariance matrix, with respect to minimizing the expected quadratic loss, or risk function. Ledoit

and Wolf [70] provide a theorem that expresses the optimal shrinkage intensity in terms of the

variance and covariance of the sample matrix and the target matrix. Under the expected quadratic

loss with respect to the Frobenius norm, this optimal intensity will always exists. Haff [53] explored

shrinkage estimates of this type and under this loss function, but did not provide any optimal results,

his coefficients do not depend on the observations of X. The optimal intensity must be estimated

from the data. Ledoit and Wolf [70] and [71] provide shrinkage estimators for application of portfolio

selection in economics. In Ledoit and Wolf [70], the target is a single index model of historical market

returns. In [71] they look at a constant-correlation model. Each of these targets are described in

the respective papers and highlighted in Schäfer and Strimmer [85]. Both tend to be positively
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correlated which matches the historical market data. Sancetta [83] applies a shrinkage estimate to

a time-series model. The result is similar to that of Ledoit and Wolf [72] except the target matrix

has additional structure for dependent data. Typically the target matrix should be well-structured

and have few free parameters. Details for three popular targets is provided below.

3.2.1 Shrinkage to diagonal, common variance

We first explore the work in the literature when the target matrix, T , is of the form T = vI.

That is, T is a diagonal matrix with a common variance v. The target will contribute very little

variance to the estimator since there is only one-free parameter. The shrinkage estimator is written

explicitly as

S∗ = λvI + (1− λ)S. (3.3)

Ledoit and Wolf [72] find the optimal common value, v, and shrinkage intensity, λ, by exploring the

objective function in a finite sample and then minimizing the quadratic risk. Following Leung and

Muirhead [74] they consider the Frobenius norm: ‖A‖ =
√

tr(AA′)/p. The 1/p is included so the

norm of the identity matrix will be 1. Let X denote a p×n matrix of n independent and identically

distributed observations on a system of p random variables having mean zero and covariance Σ with

finite fourth moments. They find a Stein-type shrinkage estimator of the form Σ∗ = λvI + (1−λ)S,

where I is the identity matrix and S = XX ′/n is the sample covariance matrix, that minimizes the

expected quadratic loss E[‖Σ∗ − Σ‖2]. We begin by highlighting their work in detail.

3.2.1.1 Analysis in Finite Sample

The squared Frobenius norm ‖ · ‖2 is a quadratic form whose associated inner product is

〈A1, A2〉 = tr(A1A
′
2)/p. We define the four scalars: µ = 〈Σ, I〉, α2 = ‖Σ− µI‖2, β2 = E[‖S − Σ‖2],

and δ2 = E[‖S − µI‖2]. We note the fourth moments of X are needed so β2 and δ2 are finite. As

shown in the Lemma 2.1 in Ledoit and Wolf [72], we have the following decomposition, δ2 = α2 +β2.

The Lemma allows us to solve for the optimal values for v and λ explicitly. A calculus based

minimization of the objective function, E[‖Σ∗ − Σ‖2, with respect to λ and v provide the optimal

values, v = µ = trΣ/p and λ = β2/(α2 + β2) = β2/δ2. It is then noted that unfortunately

Σ∗ = β2

δ2 µI + α2

δ2 S is not a bona fide estimator since it depends on knowledge of the covariance

matrix Σ. They then develop an estimator with the same properties as Σ∗ asymptotically as the
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number of observations and the number of variables go to infinity together. We provide an alternative

estimator for Σ∗ with similar assumptions that is comparable under general-asymptotics.

3.2.1.2 Ledoit and Wolf Estimator

Ledoit and Wolf [72] find a consistent estimator, with respective to quartic mean, for Σ∗

under the following assumptions. Let n = 1, 2, . . . index a sequence of statistical observations. For

every n, Xn is a pn × n matrix of n iid observations on a system of pn random variables with

mean zero and covariance matrix Σn. The subscript n is supplied to indicate we are exploring

asymptotically. The number of variables pn can change and even go to infinity with the number of

observation n, as long as we satisfy the below assumptions. We first note we can decompose the

covariance matrix as follows: Σn = ΓnΛnΓ′n where Λn is a diagonal matrix of eigenvalues, and Γn an

orthogonal matrix of eigenvectors. Yn = Γ′nXn is a pn × n matrix of n iid observations on a system

of pn uncorrelated and mean zero random variables that span the same space as the original system.

Let (yn1i, y
n
2i, . . . , y

n
pni

)′ denote the ith column of the matrix Yn. They make the following additional

assumptions.

Assumption 1: There exists a constant K1 independent of n such that
pn
n
≤ K1

Assumption 2: There exists a constant K2 independent of n such that
1
pn

pn∑
i=1

E[(yni1)8] ≤ K2

Assumption 3: lim
n→∞

pn
n
×
∑

(i,j,k,l)∈Qn(Cov[yni1y
n
j1, y

n
k1y

n
l1])2

|Qn|
= 0

where |Qn| is the cardinality of Qn, the set of all quadruples that are made of four distinct integers

between 1 and pn.

We note that Assumption 1 includes standard asymptotics where pn will stay fixed. Fur-

thermore it does not require the ratio pn/n to converge, merely to be bounded. Assumption 2 states

that the eighth moment is bounded, on average. Assumption 3 states the products of uncorrelated

random variables are uncorrelated, on average and in the limit.

Under the three assumption, Ledoit and Wolf [72] provide several asymptotic results and

suggest estimators for the asymptotic components of α2
n, β2

n, δ2
n and µn, where the subscript n

indicates that the results will hold asymptotically. mn = 〈Sn, In〉n = tr(Sn)/p, where Sn = XnX
′
n/n

and I is the pn×pn identity matrix. They show, as n→∞, mn
q.m.−→µn. Likewise, d2

n = ‖Sn−mnIn‖2
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will converge, in quartic mean, to δ2
n as n→∞. Similarly, if we let xn·k denote the pn×1 kth column

of the observation matrix Xn, for k = 1, . . . , n. We define b̃2n = 1
n2

∑n
k=1 ‖xn·k(xn·k)′ − Sn‖2n and

b2n = min(b̃2n, d
2
n), then b̃2n

q.m.−→β2
n and b2n

q.m.−→β2
n. The constrained estimator b2n is included because

β2
n ≤ δ2

n by Lemma 3.2.2. In general the constraint is not necessary, but it is included to assure the

estimator of α2
n is nonnegative. a2

n = d2
n − b2n is a consistent estimator of α2

n under quartic mean

convergence. This leads to the following key result from Ledoit and Wolf [72].

Theorem 3.2.1.

S∗n =
b2n
d2
n

mnIn +
a2
n

d2
n

Sn (3.4)

is a consistent estimator of Σ∗n under quartic mean convergence. As a consequence, S∗n has the same

asymptotic expected loss (or risk) as Σ∗n.

3.2.1.3 Chen, Wiesel, Hero Approach

Chen, Wiesel and Hero [17] improve on the estimator of Ledoit and Wolf [72] by utilizing

the Rao-Blackwell theorem. Under the assumption of normality of the data, they condition on the

sufficient statistic S and find the following estimate for the shrinkage intensity,

λ̂ = min
(

(n− 2)/n · tr(S2) + tr(S)2

(n+ 2) [tr(S2)− tr(S)2/p]
, 1
)
. (3.5)

By the Rao-Blackwell theorem, see Casella and Berger [14], the shrinkage estimator using this

estimator for the optimal intensity should dominate that of Ledoit and Wolf [72]. They use this

approach with a motivation for time-series data and their simulations follow with examples showing

the estimator’s effectiveness. We use a similar approach in that we assume normality of the data

and explicitly find the optimal shrinkage intensity in terms of the trace of Σ and Σ2.

3.2.1.4 Schäfer-Strimmer Estimator

Schäfer and Strimmer [85] provide a detailed discussion of Shrinkage estimators of the co-

variance matrix and finding the optimal intensity. They explore small sample inference. Rather than

finding a consistent estimator for µ and λ, they estimate λ by finding unbiased sample counterparts.

Like that described in Ledoit and Wolf [72] they find an estimator for µ by v = avgisii where sii

are the diagonal elements of the sample covariance matrix S. They suggest the following unbiased
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estimator for the shrinkage intensity,

λ̂ =

∑
i6=j V̂ar(sij) +

∑
i V̂ar(sii)∑

i 6=j s
2
ij +

∑
i(sii − v)2

. (3.6)

It is noted that in order to compute the optimal shrinkage intensity it is necessary to estimate the

variances of the individual entries of S. They provide technical details of this computation in the

Appendix of their work, see [85].

3.2.1.5 A New Estimator under optimal conditions

Similar to Ledoit and Wolf [72], we utilize a general asymptotic estimator but with a different

approach for finite application. In Theorem 3.2.2 we determine the optimal value for v and λ are

µ and β2

δ2 , respectively. Rather than find consistent estimators for δ2, β2, α2 and µ in a purely

asymptotic setting, we explicitly calculate these scalars in terms of the trace of Σ and Σ2 and

suggest unbiased estimators for those terms under the following assumptions. We note this approach

is similar to that utilized in Chen, Wiesel, and Hero [17].

We assume the data to come from a multivariate normal distribution with some mean vector

and covariance matrix Σ > 0. We define ai = trΣi/p to be the ith arithmetic mean of the eigenvalues

of Σ.

We will utilize the following well known result with proof in Appendix B.

Lemma 3.2.1.

E[tr(S2)] =
n+ 1
n

trΣ2 +
1
n

(trΣ)2 (3.7)

We note, µ = 〈Σ, I〉 = tr(Σ)/p = a1. Considering (3.7) and the decomposition of δ2 as

follows when the data is Normal:

δ2 = E[‖S − µI‖2] = E[‖S‖2]− 2µE[〈S, I〉] + µ2‖I‖2

= E[tr(S2)/p]− 2µE[tr(S)/p] + µ2

=
n+ 1
n

1
p

trΣ2 +
1
n

1
p

(trΣ)2 − 2
µ

p
trΣ + a2

1

=
n+ 1
n

a2 +
p− n
n

a2
1.
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Likewise, we expand the term α2 as follows

α2 = ‖Σ− µI‖2 = ‖Σ‖2 − 2µ〈Σ, I〉+ µ2‖I‖2

=
1
p

trΣ2 − 2µ
1
p

trΣ + µ2

= a2 − a2
1.

In a finite setting, the problem has been reduced to finding good estimators for a1 and a2.

We utilize the results from Srivastava [99]. He begins with the following assumptions,

(A) : As p→∞, ai → a0
i , 0 < a0

i <∞, i = 1, . . . , 4,

(B) : n = O
(
pδ
)
, 0 ≤ δ ≤ 1.

Srivastava finds unbiased and consistent estimators, with respect to convergence in probability, for

a1 and a2. We recall,

â1 = trS/p

and

â2 =
n2

(n− 1)(n+ 2)
1
p

[
trS2 − 1

n
(trS)2

]
are unbiased and consistent estimators for a1 and a2 respectively as (n, p) → ∞. Thus in a finite

situation, µ̂ = â1, α̂2 = â2 − â2
1, δ̂2 = n+1

n â2 + p−n
n â2

1 and β̂2 = δ̂2 − α̂2 will be unbiased estimators

for µ, α2, δ2 and β2, respectively. Furthermore, due to the weak assumption (B), both â2 and â1

should be good estimators for large p situations, i.e. when p� n, consistency will hold. Simulations

indicate an improvement with these estimators, over that suggested in the literature, when p is large

and n is relatively small. In situations where both n and p are large (over 25), our newly suggested

estimators are comparable to that in the literature.

3.2.2 Shrinkage to diagonal, unit variance

We now explore a similar target matrix to that described above. The target matrix is a

diagonal with unit variance, or more commonly called the Identity. This target contributed no

variance to the shrinkage estimator since the target is a constant matrix. An analogous optimal

value of λ can easily be found using the methodology of Ledoit and Wolf [72]. Let δ2 = ‖S − I‖2,
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α2 = ‖Σ− I‖2, and β2 = E[‖S − Σ‖2]. We utilize the following elementary decomposition of δ2.

Lemma 3.2.2. δ2 = α2 + β2

Proof. We first recall that E[S] = Σ.

δ2 = E[‖S − I‖2] = E[‖S − Σ‖2] + E[‖Σ− I‖2] + 2E[〈S − Σ,Σ− I〉]

= E[‖S − Σ‖2] + ‖Σ− I‖2 + 2〈E[S − Σ],Σ− I〉

= E[‖S − Σ‖2] + ‖Σ− I‖2 = α2 + β2

The decomposition of δ2 makes it easy to calculate the optimal value of λ in terms of α2,

β2 and δ2.

Theorem 3.2.2. Consider the optimization problem

min
λ
E[‖Σ∗ − Σ‖2]

s.t. Σ∗ = λI + (1− λ)S,

where the coefficient λ is nonrandom. The solution verifies

Σ∗ =
β2

δ2
I +

α2

δ2
S, (3.8)

with

E[‖Σ∗ − Σ‖2] =
α2β2

δ2
. (3.9)

Proof. This proof follows that of Theorem 2.1 in Ledoit and Wolf [72]. We use the fact that E[S] = Σ

as in Lemma 3.2.2, we can rewrite the objective function as

E[‖Σ∗ − Σ‖2] = λ2‖Σ− I‖2 + (1− λ)2E[‖S − Σ‖2]. (3.10)

Differentiating with respect to λ and the first-order condition is: 2λα2−2(1−λ)β2 = 0. The solution

is found to be: λ = β2/(α2 + β2) = β2/δ2. We note that 1 − λ = α2/δ2 and at the optimum, the
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objective takes on the value: (β2/δ2)α2 + (α2/δ2)β2 = α2β2/δ2. A second derivative will show a

minimization.

3.2.2.1 Ledoit-Wolf Type Estimator

Like in Ledoit and Wolf [72], unfortunately λ = β2/δ2 is not a true estimator since it

depends on Σ. Consistent estimators, analogous to that described in Ledoit and Wolf can easily be

found, d2
n = ‖Sn − In‖2

q.m.−→ δ2
n as n → ∞. As before, if we let xn·k denote the pn × 1 kth column

of the observation matrix Xn, for k = 1, . . . , n. We define b̃2n = 1
n2

∑n
k=1 ‖xn·k(xn·k)′ − Sn‖2n and

b2n = min(b̃2n, d
2
n), then b̃2n

q.m.−→β2
n and b2n

q.m.−→β2
n. The constrained estimator b2n is included because

β2
n ≤ δ2

n by Lemma 3.2.2. a2
n = d2

n − b2n will be a consistent, with respect to quadratic mean,

estimator of α2. We note that Ledoit and Wolf [72] do not provide these estimators, however

they are analogous to those provided for the case of the target matrix T = µI. We will refer to

these estimators as Ledoit-Wolf type estimators in our simulations below. We also note that a

Rao-Blackwell type approach utilized by Chen, Wiesel and Hero [17] can be applied here as well.

Due to the similarity to our recommended estimator below, and the simulation results (see section

3.2.4) indicating an improved performance over that in the literature, we exclude a derivation and

discussion on this type of estimator for the optimal shrinkage intensity.

3.2.2.2 Schäfer-Strimmer Estimator

Schäfer and Strimmer [85] estimate λ by finding unbiased sample counterparts. They suggest

the following unbiased estimator for the shrinkage intensity,

λ̂ =

∑
i6=j V̂ar(sij) +

∑
i V̂ar(sii)∑

i6=j s
2
ij +

∑
i(sii − 1)2

. (3.11)

We note this is very similar to (3.11) with the exception of a 1 in replace of the sample v in the

denominator. They provide technical details of this computation in the Appendix of Schäfer and

Strimmer [85].
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3.2.2.3 A New Estimator

Like that in the previous section, under the assumption of normality of our data, we can

explicitly calculate α2, β2 and δ2 in terms of the trace of Σ and Σ2,

α2 = ‖Σ− I‖2 = ‖Σ‖2 − 2〈Σ, I〉+ ‖I‖2

=
1
p

trΣ2 − 2
1
p

trΣ + 1

= a2 − 2a1 + 1

and

δ2 = E[‖S − I‖2] = E[‖S‖2]− 2E[〈S, I〉] + ‖I‖2

= E[tr(S2)/p]− 2E[tr(S)/p] + 1

=
n+ 1
n

1
p

trΣ2 +
1
n

1
p

(trΣ)2 − 2
1
p

trΣ + 1

=
n+ 1
n

a2 +
p

n
a2

1 − 2a1 + 1.

We can replace a1 and a2 by the unbiased and consistent estimators â1 and â2. An estimator for λ

then can be found easily by λ̂ = α̂2/δ̂2 where α̂2 = â2 − 2â1 + 1 and δ̂2 = n+1
n â2 + p

n â
2
1 − 2â1 + 1.

As before, due to Assumption (B), we can expect our estimator to perform quite well in high-

dimensional, low sample size situations.

3.2.3 Shrinkage to diagonal, unequal variance

We now explore the optimal shrinkage intensity for the shrinkage estimator with diagonal,

unequal variance target. This model represents a compromise between the low-dimensional targets

described above, and the correlation models described in Ledoit and Wolf [70], [71]. This target will

meet the criteria stated above, structured, always positive definite and well-conditioned in practice.

The target contributes more variance to the estimator since it has p free parameters, but less bias

since it is composed of p unbiased components. Explicitly written as, S∗ = λD+ (1− λ)S where D

is a diagonal matrix consisting of the diagonal entries of S. Using the theorem of optimization from

Ledoit and Wolf [70], Schäfer and Strimmer [85] propose an unbiased estimator for the shrinkage

intensity. Using methodology similar to that of Ledoit and Wolf [72] and that in the previous
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sections, we explore the optimal in terms of the quadratic loss with respect to the Frobenius norm.

3.2.3.1 Schäfer and Strimmer Estimator

Schäfer and Strimmer [85] study this shrinkage estimator type in detail. They suggest a

simple unbiased estimator for the shrinkage intensity,

λ̂ =

∑
i 6=j V̂ar(sij)∑

i 6=j s
2
ij

. (3.12)

The computational details of calculating V̂ar(sij) are provided in the appendix in Schäfer and Strim-

mer [85]. They developed an algorithm that allows quick computation of their shrinkage estimator

which is provided in the corpcor package in the GNU R-Project. Their algorithm is as efficient as

that of computing the sample covariance matrix S.

3.2.3.2 A New Estimator

We approach the problem similar to how Ledoit and Wolf [72] did with the target, T = µI.

We will calculate the optimal shrinkage intensity with respect the following scalars. δ2 = E[‖S−D‖2],

α2 = E[‖S − Σ‖2], β2 = E[‖Σ −D‖2], and γ2 = E[〈S − Σ,Σ −D〉]. We begin by considering the

following simple lemma that decomposes δ2.

Lemma 3.2.3. δ2 = α2 + β2 + 2γ2

Proof.

δ2 = E[‖S −D‖2] = E[‖S − Σ‖2] + E[‖Σ−D‖2] + 2E[〈S − Σ,Σ−D〉]

= α2 + β2 + 2γ2

This decomposition will allow us to find the optimal shrinkage intensity. Consider the

following theorem.
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Theorem 3.2.3. The solution to the minimization

min
λ
E[‖Σ∗ − Σ‖2]

s.t. Σ∗ = λD + (1− λ)S,

where the coefficient λ is nonrandom is

Σ∗ =
α2 + γ2

δ2
D +

β2 + γ2

δ2
S. (3.13)

Proof. We use Lemma 3.2.3 and can rewrite the objective function as

E[‖Σ∗ − Σ‖2] = E[‖λD − λΣ + (1− λ)S − (1− λ)Σ‖2]

= λ2E[‖D − Σ‖2] + (1− λ)2E[‖S − Σ‖2] + 2λ(1− λ)E[〈S − Σ, D − Σ〉]

= λ2β2 + (1− λ)2α2 − 2λ(1− λ)γ2

Differentiate with respect to λ and find the first-order condition.

∂E[‖Σ∗ − Σ‖2]
∂λ

= 2λβ2 − 2(1− λ)α2 − 2γ2 + 4λγ2 = 0

−2α2 − 2γ2 + 2λα2 + 2λ2β2 + 4λγ2 = 0

λ(α2 + β2 + 2γ2) = α2 + γ2

⇒ λ =
α2 + γ2

δ2

Note that (1 − λ) = β2+γ2

δ2 . A second derivative shows the shrinkage intensity that minimizes the

objective function.

Let Ψ = diag(Σ), that is,

Ψ =



σ11 0 . . . 0

0 σ22 . . . 0
...

...
. . .

...

0 0 . . . σpp


(3.14)
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and we define a∗i = trΨi/p.

As before, under the assumption that our data is normally distributed, we can explicitly find

the scalar terms δ2, α2, β2 and γ2 in terms of the trace of Σ and now Ψ. We utilize the Frobenius

norm with the 1/p term included. Unlike that in Ledoit and Wolf [72], who include 1/p to normalize

the norm of the identity matrix, we include it for theoretical benefits. We begin with additional

Lemmas, proofs are provided in Appendix B

Lemma 3.2.4.

E[tr(D2)] =
n+ 2
n

trΨ2 (3.15)

and

Lemma 3.2.5.

E[tr(SD)] = E[tr(DS)] = E[tr(D2)] (3.16)

Utilizing (3.7), (3.15) and (3.16) we get the following

δ2 = E[‖S −D‖2] =
1
p
E[tr(S2)− 2tr(SD) + tr(D2)]

=
n+ 1
np

trΣ2 +
1
np

(trΣ)2 − n+ 2
np

trΨ2

=
n+ 1
n

a2 +
p

n
a2

1 −
n+ 2
n

a∗2.

Likewise

γ2 = E[〈S − Σ,Σ−D〉] =
1
p
E[tr(SΣ)− tr(SD)− trΣ2 + tr(ΣD)]

=
1
p

(
trΣ2 − n+ 2

n
trΨ2 − trΣ2 + trΨ2

)
= − 2

np
trΨ2 = − 2

n
a∗2,

with the third line justified since E[tr(SΣ)] = tr(E[S]Σ) = tr(Σ2) and likewise E[tr(DΣ)] = tr(Ψ2).
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Lastly,

α2 = E[‖S − Σ‖2] =
1
p
E[tr(S2)− 2tr(ΣS) + trΣ2]

=
1
p

(
E[tr(S2)]− trΣ

)
=

n+ 1
np

trΣ2 +
1
np

(trΣ)2 − 1
p

trΣ2

=
1
n

(
a2 + pa2

1

)
.

We find an estimator for λ in a finite sample using estimators defined for general asymptotics. When

considering data from a multivariate normal distribution and recalling ai = trΣ2/p and a∗i = trΨi/p

where Ψ is the diagonal elements of Σ. Consider the assumptions,

(A) : As p→∞, ai → a0
i , 0 < a0

i <∞, i = 1, . . . , 4.,

(A.2) : As p→∞, a∗i → a∗0i , 0 < a∗0i <∞, i = 1, . . . , 4,

(B) : n = O
(
pδ
)
, 0 ≤ δ ≤ 1.

We note these assumptions are equivalent to that of our assumption in the previous sections and that

of Srivastava [99]. Assumption (A) will imply assumption (A.2). Here we write it explicitly to remind

the reader. Under our assumptions, â∗2 = n
n+2 tr(D2)/p will be an unbiased and consistent estimator

for a∗2 under general asymptotics, see Theorem B.1 in Appendix B. To estimate α2, β2, γ2, and δ2

we simply replace a1, a2 and a∗2 with their respective estimators, â1, â2, and â∗2 respectively. Due to

the assumption (B), we expect our estimators to be fairly accurate for large p, small n situations.

We estimate λ with λ̂ = α̂2+γ̂2

δ̂2
where α̂2 = 1

n

(
â2 + pâ2

1

)
, γ̂2 = − 2

n â
∗
2 and δ̂2 = n+1

n â2 + p
n â

2
1− n+2

n â∗2.

3.2.4 Simulation Study

We conduct a short simulation study to show the effectiveness of our suggested estimators.

We sample n+1 observations from a p-dimensional multivariate normal distribution with zero mean

vector and covariance matrix Σ that is positive definite. The eigenvalues of Σ are drawn from a

Uniform distribution over (0.5, 10.5). We then find a positive definite matrix with those eigenvalues

utilizing the method provided by Dr. Ravi Varadhan, see the selected source code in the Appendix

C. The n + 1 samples of p dimension are then used to estimate the various shrinkage estimators.
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Optimal λ λnew λLW λRBLW λSchaf

Simulated Mean 0.6503192 0.6595865 0.6265542 0.6424440 0.6407515
Standard Error 0 0.0000602 0.0000616 0.0000588 0.0000608

Table 3.1: λ estimation for n = 40, p = 20, T = µI

Optimal λ λnew λLW λRBLW λSchaf

Simulated Mean 0.8635683 0.8685150 0.8121008 0.8392271 0.8388833
Standard Error 0 0.0000626 0.0000630 0.0000604 0.0000624

Table 3.2: λ estimation for n = 30, p = 30, T = µI

m = 1000 simulations are run for each Σ.

Our first results explore the shrinkage target of the form (3.3) using the estimated values

of Ledoit and Wolf [72], the Rao-Blackwell approach by Chen, Wiesel and Hero [17], Schäfer and

Strimmer [85] and our suggested estimators using â1 and â2. We provide two main results. First, we

sample from the described multivariate normal distribution and we calculate, m = 1000, observed

values of λnew, λLW , λRBLW , and λSchaf as the estimated optimal shrinkage intensity for our newly

suggested estimator, that of Ledoit and Wolf [72], the Rao-Blackwell approach by Chen, Wiesel and

Hero [17] and Schäfer and Strimmer [85], respectively. We then compare these estimates to the true

optimal value of λ = β2/δ2 from our analysis under the normality condition. We provide three such

cases, Table 3.1 provides results for n = 40, p = 20 for comparison with the results provided in Ledoit

and Wolf [72], Table 3.2 for n = 30, p = 30 and Table 3.3 for n = 5, p = 100 as an extreme case of

high dimension compared to the number of observations. We note that the Simulated Mean value for

the Optimal λ is constant. We see in Tables 3.1 and 3.2 that our suggested estimate is comparable

to that of Ledoit and Wolf [72], Chen, Wiesel and Hero [17] and Schäfer and Strimmer [85] and each

does a fairly accurate job, on average, in estimating the optimal shrinkage intensity with comparable

standard error. We see in Table 3.3 that our suggested estimator shows an improvement compared to

the other estimators, with Chen, Wiesel and Hero [17] and Schäfer and Strimmer’s [85] performing

better than that of Ledoit and Wolf [72]. We also note, that as expected, the optimal intensity

increases as the dimension increases. Our second simulation study looks at how well the shrinkage

Optimal λ λnew λLW λRBLW λSchaf

Simulated Mean 0.9868715 0.9887804 0.6634387 0.7909521 0.7950775
Standard Error 0 0.0000218 0.0000532 0.0000176 0.0000194

Table 3.3: λ estimation for n = 5, p = 100, T = µI
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Estimator S S∗new S∗LW S∗RBLW S∗Schaf
Risk 13.57979441 5.60630692 5.62695307 5.60430548 5.60843356
SE on Risk 0.07783102 0.01608281 0.01762772 0.01662065 0.01682610
PRIAL 0.00000000 58.71581891 58.56378310 58.73055725 58.70015857
Cond. Num. 61.74148807 3.09899164 3.37202161 3.23545453 3.25240091

Table 3.4: Shrinkage estimation for n = 40, p = 20, T = µI

Estimator S S∗new S∗LW S∗RBLW S∗Schaf
Risk 23.56304 6.58705963 6.64572833 6.58960045 6.59754589
SE on Risk 0.1081352 0.01211236 0.01492722 0.01299565 0.01308563
PRIAL 0 72.04494536 71.79595918 72.03416227 72.00044236
Cond. Num. 3679878 2.63637030 3.06365648 2.85155433 2.85244013

Table 3.5: Shrinkage estimation for n = 30, p = 30, T = µI

estimates perform compared to the empirical sample covariance matrix S. The main comparisons

match that of the simulation study in Ledoit and Wolf [72]. We look at the simulated risk, with

respective to the true covariance matrix Σ, of S, S∗new, S∗LW S∗RBLW and S∗Schaf , for the sample

covariance matrix, the shrinkage estimate using our suggested intensity estimate, that of Ledoit and

Wolf [72], Chen, Wiesel and Hero [17] and Schäfer and Strimmer [85], respectively. We also report

the percentage relative improvement in average loss (PRIAL) of the various estimated shrinkage

estimates. This is defined as:

PRIAL(S∗) =
E[‖S − Σ‖2]− E[‖S∗ − Σ‖2]

E[‖S − Σ‖2]
× 100.

If the simulated risk is lower, and the simulated PRIAL is positive, this indicates the shrinkage

estimate has performed better, on average, than the sample covariance matrix. We also report the

average condition number of each estimate of Σ. This condition number is calculated as the ratio

of the maximum and minimum eigenvalues of the estimator as done in Schäfer and Strimmer [85].

Like our previous study, we look at three cases. Table 3.4 for n = 40, p = 20 for comparison with the

results provided in Ledoit and Wolf [72], Table 3.5 for n = 30, p = 30 and Table 3.6 for n = 5, p = 100

as an extreme case of high dimension compared to the number of observations. We see from Tables

3.4 and 3.5 that our recommended estimator is comparable to that in the literature, with a slight

improvement over that in Ledoit and Wolf [72] in terms of simulated risk, simulated PRIAL and the

average condition number. In Table 3.6 we see a substantial improvement over that in the literature.

Our estimator using â1 and â2 has lower simulated-risk, with a smaller error, a 98% improvement
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Estimator S S∗new S∗LW S∗RBLW S∗Schaf
Risk 529.331706 8.7998516 68.5254660 29.4456277 28.7813665
SE on Risk 2.535637 0.0195423 0.7620129 0.1927102 0.2056495
PRIAL 0 98.3375544 87.0543432 94.4372069 94.5626974
Cond. Num. ∞ 1.7015159 15.9457052 8.6021882 8.4549154

Table 3.6: Shrinkage estimation for n = 5, p = 100, T = µI

Estimator S S∗new S∗LW S∗Schaf
Risk 13.57979441 6.92282199 7.13536939 7.04202294
SE on Risk 0.07783102 0.03411014 0.03649461 0.03532218
PRIAL 0 49.02115763 47.45598368 48.14337589
Cond. Num. 61.74148807 6.54504929 6.96354951 6.783513571

Table 3.7: Shrinkage estimation for n = 40, p = 20, T = I

over S and is very well-conditioned. The simulation results suggest our newly suggested estimator,

under the assumption of normality, performs better in extreme cases of high dimensions, that is,

p � n. We also note, that as expected, the empirical sample covariance matrix performs worse as

the dimensionality increases.

We now conduct a short study for the effectiveness of our newly defined estimator for the

shrinkage target T = I. We omit the results for estimating λ as they are analogous to that above.

We look at the simulated risk, with respective to the true covariance matrix Σ, of S, S∗new, S∗LW

and S∗Schaf , for the sample covariance matrix, the shrinkage estimate using our suggested intensity

estimate, that of the Ledoit and Wolf [72] type (i.e. consistent in quadratic mean), and Schäfer

and Strimmer [85], respectively. We also report the percentage relative improvement in average loss

(PRIAL) of the various estimated shrinkage estimates and the average condition number of each

estimate of Σ. Like our previous study, we look at three cases. Table 3.7 for n = 40, p = 20,

Table 3.8 for n = 30, p = 30 and Table 3.9 for n = 5, p = 100 as an extreme case of high dimension

compared to the number of observations. We see analogous results to our previous study. Tables 3.7

and 3.8 show that our newly suggested shrinkage estimator is comparable to that in the literature.

Estimator S S∗new S∗LW S∗Schaf
Risk 23.56304 8.02733238 8.53856215 8.28631740
SE on Risk 0.1081352 0.03046508 0.03568145 0.03286028
PRIAL 0 65.93252105 63.76289499 64.83340537
Cond. Num. 3679878 5.29158187 5.91095204 5.60755595

Table 3.8: Shrinkage estimation for n = 30, p = 30, T = I
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Estimator S S∗new S∗LW S∗Schaf
Risk 529.331706 9.23354172 75.7840383 34.1198695
SE on Risk 2.535637 0.03560733 0.8071637 0.2346702
PRIAL 0 98.25562278 85.6830722 93.5541610
Cond. Num. ∞ 2.36223698 17.3008312 9.5728825

Table 3.9: Shrinkage estimation for n = 5, p = 100, T = I

Optimal λ λnew λSchaf

Simulated Mean 0.6780003 0.6865272 0.6867752
Standard Error 0 0.0000715 0.0000688

Table 3.10: λ estimation for n = 40, p = 20, T = D

However, Table 3.9 shows an improvement in risk, error, PRIAL and condition number over that in

the literature.

We now conduct a simulation study for the shrinkage target, T = D, the diagonal elements

of S. Like the previous studies, we look at estimating the shrinkage intensity as well as the overall

performance of our newly suggested shrinkage estimator. Table 3.10 shows the result for n = 40, p =

20, Table 3.11 provides the case for n = 30, p = 30 and Table 3.12 is provided to show an extreme

case of high dimensionality compared to the sample size. We only look at our newly suggested

estimator for λ and compare it to that in Schäfer and Strimmer [85].

We see similar results to our previous simulations. Tables 3.10 and 3.11 show our recom-

mended estimator for λ is comparable to that of Schäfer and Strimmer [85] and are fairly accurate

in estimating the optimal shrinkage intensity. Table 3.12 indicates that our recommended estimator

performs better than that provided in the literature. We next conduct a series of simulations and

comparing the shrinkage estimators, S∗ to the sample covariance matrix. As before, we look at the

simulated risk, PRIAL and average condition number for the case of n = 40, p = 20, Table 3.13,

n = 30, p = 30, Table 3.11 and n = 5, p = 100, Table 3.15, as an extreme case of high dimensions

compared to sample size. We see analogous results to our previous simulation studies. In Tables

3.13 and 3.14 we see that our recommended shrinkage estimator is comparable to that in Schäfer

and Strimmer [85] and both show an improvement over the sample covariance matrix. Table 3.15

Optimal λ λnew λSchaf

Simulated Mean 0.7040765 0.7117110 0.7038033
Standard Error 0 0.0000552 0.0000528

Table 3.11: λ estimation for n = 30, p = 30, T = D
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Optimal λ λnew λSchaf

Simulated Mean 0.9878116 0.9876334 0.7945817
Standard Error 0 0.0000219 0.0000146

Table 3.12: λ estimation for n = 5, p = 100, T = D

Estimator S S∗new S∗Schaf
Risk 13.57979441 6.33127583 6.30745324
SE on Risk 0.07783102 0.02116759 0.02099693
PRIAL 0 53.37723360 53.55266031
Cond. Num. 61.74148807 4.87310095 4.92759049

Table 3.13: Shrinkage estimation for n = 40, p = 20, T = D

Estimator S S∗new S∗Schaf
Risk 23.56304 7.65010548 7.63223088
SE on Risk 0.1081352 0.01829089 0.01799747
PRIAL 0 67.53344758 67.60930623
Cond. Num. 3679878 5.10986390 5.17330154

Table 3.14: Shrinkage estimation for n = 30, p = 30, T = D

Estimator S S∗new S∗Schaf
Risk 529.331706 19.03195992 38.078744
SE on Risk 2.535637 0.07905792 0.195695
PRIAL 0 96.40453053 92.806261
Cond. Num. ∞ 46.13478905 115.857786

Table 3.15: Shrinkage estimation for n = 5, p = 100, T = D
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shows an improvement over shrinkage estimator provided by Schäfer and Strimmer [85]. We note

that none of the results in this particular case appear to be very well-conditioned. This is due to

the target matrix construction. Each sii in D is estimated with only n = 5 degrees of freedom.

However, our recommended estimator still shows an improvement over that in the literature or the

sample covariance matrix.

3.2.5 Timing Study

It is noted in Schäfer and Strimmer [85] that their algorithm for estimating the optimal

shrinkage estimator, in the diagonal target matrix case, for the covariance matrix is efficient. They

claim their algorithm is on the same order as estimating the empirical sample covariance matrix.

The estimator â2 requires calculation of the square of the sample covariance matrix. We note that

in theory this will require O(p2) operations and should be on the same order as calculating S. We

conduct a brief timing study to show that our recommended estimators is of the same order of

computational efficiency as that described in Schäfer and Strimmer [85]. We note that the purpose

of this timing study is not to perform a comprehensive study on the efficiency of our estimator, or

that of Schäfer and Strimmer [85], but rather to compare the two.

The study is structured as such: For a given n and p, we find a random covariance matrix,

Σ, using Dr. Varadhan’s method in Appendix C. We set the seed for the random number generator

(RNG) and generate m = 10, 000 samples, of size N = n+1, from a multivariate normal distribution

with mean zero and covariance Σ. The shrinkage estimator using our suggested estimators for the

intensity is computed for each of the m = 10, 000 iterations. The run-time, in seconds, is calculated

and recorded. The process is then repeated by reseting the seed for the RNG, hence each generated

normal sample will be the same, and the shrinkage estimator defined by Schäfer and Strimmer [85]

is computed and the run-time taken to perform m = 10, 000 iterations is calculated and recorded.

A driver and wrapper program control the sample size and dimensionality and record the

results. Coding samples are provided in the Appendix C. The timing study was run on a Dell

Vostro 1510, Intel(R) Core(TM)2 Duo T9300 2.5GHz with 2GB of RAM, running Ubuntu release

9.04 (jaunty jackalope) Linux kernel version 2.6.28-2 on GNU R-Project 2.8.1.

We perform three brief timing studies. In the first, the dimensionality is fixed at p = 20,

and the sample size n increases. Figure 3.1 provides the results as n increases with p fixed. We

see that both our nearly defined shrinkage estimator and that of Schäfer and Strimmer [85] appear
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Figure 3.1: Timing Study as n increases, p fixed

to have linear growth with respect to n increasing. Furthermore, it appears that the linear rate is

higher in the estimator in Schäfer and Strimmer [85]. Although the units of time are dependent

(and hence irrelevant to our study) on the computer performing the study, it does appear that the

new shrinkage estimator is approximately twice as fast in this particular case. We next explore the

behavior of the estimators as the dimensionality increases with the sample size fixed. We let n = 30

and let p increase. This situation is an example of extreme high-dimensionality. Figure 3.2 provides

the result. We see that both of the shrinkage estimators appear to have a quadratic growth. Not

only are they on the same order, the appear to be very similar. Lastly we explore when both the

sample size and dimensionality increase. We let n = p increase together to perform our study. We
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Figure 3.2: Timing Study as p increases, n fixed
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Figure 3.3: Timing Study as n = p increases

see in Figure 3.3 that as both n and p increase together, both estimators appear to have quadratic

growth (as expected since n increasing is linear and p increasing is quadratic). The simulated timing

study seems to indicate that the newly recommended estimator may be slightly more efficient than

that in Schäfer and Strimmer [85] but on the same quadratic order. Overall, we can conclude there

is no loss in computational efficiency when using our newly suggested shrinkage estimator.
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3.2.6 Data Example

Here we apply our recommended estimator to a set of real data. The Institute of Applied

Microbiology, University of Agricultural Sciences of Vienna, collected microarray data measuring

the stress response of the microorganism Escherichia coli (more commonly known as E.coli) during

the expression of a recombinant protein. The data monitors all 4,289 protein coding genes at 8, 15,

22, 45, 68, 90, 150 and 180 minutes after induction of the recombinant protein. In a comparison with

pooled samples before induction 102 genes were identified by Schmidt-Heck et al. [86] as differentially

expressed in one or more samples after induction. We note we have p = 102 variables with only

N = n+ 1 = 8 observations. This is a case of extreme high-dimension. Our simulations indicate our

newly recommended set of estimators outperforms those in the literature in these cases. We provide

shrinkage estimates using the three targets discussed in this chapter, µI, I, and Diag(S). For each

target we explore all discussed estimates for the shrinkage intensity. For the target µI, this includes

the estimator from Ledoit and Wolf [72], the Rao-Blackwell theorem based estimator supplied by

Chen, Wiesel and Hero [17], the unbiased estimator provided by Schäfer and Strimmer [85] and our

newly introduced estimator. For the target I, we supply a Ledoit and Wolf [72] type, and the Schäfer

and Strimmer [85] suggested estimator, along with our own. Lastly, for the target consisting of the

diagonal elements of S, we look at our newly suggested estimator and compare it to that of Schäfer

and Strimmer [85]. Since the true covariance matrix is unavailable, the only way to compare the

Target T = µI T = I T = diag(S)
New Estimators 156.73 (.33) 155.95 (.33) 468.37 (.33)
LW-Type 384.89 (.17) 382.97 (.17) NA
RBLW-Type 212.23 (.27) NA NA
Schäfer-Strimmer 288.79 (.21) 287.35 (.21) 715.25 (.24)

Table 3.16: Condition Numbers (and λ̂) for estimators and common targets on E.coli data

estimates is the condition number of the estimator. We also provide the estimated optimal shrinkage

intensity. The sample covariance matrix, S, has rank 7 and is ill-conditioned. We see in Table 3.16

that for each target matrix, our recommended shrinkage estimator is the best conditioned of those

explored. In all cases, the stein-type shrinkages estimators are of full rank (102).
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3.3 Concluding Remarks

We have explored many of the methods to estimate the covariance matrix in high dimensions.

We have introduced three new estimates for optimal Stein-type shrinkage estimators. Simulations

indicate our newly suggested estimators for the shrinkage intensity λ are comparable to that in

the literature. Simulations also indicate that in the case of very high-dimensions, compared to the

sample size, our suggested estimators dominate those in the literature. A brief timing study shows

that our estimator is comparable to that in the literature in terms of computational efficiency. Due

to the improvement in extreme high-dimensional cases, and the comparable performance in terms

of computational efficiency, we recommend our newly suggested estimators based on â1, â2 and â∗2

be used for Stein-type shrinkage estimation. A brief data analysis validates the newly suggested

estimates as they are the best conditioned.
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Appendix A Proof of (n, p)-Consistent Test for Sphericity

A.1 Expression of estimator for a4

We obtain expressions for trS, trS2, (trS)2, trS2(trS)2, trS3trS, trS4 and (trS)4 in terms of

chi-squared random variables. We make use of the following well known theorem from Serdobolskii

et al. [91]

Theorem A.1. Consider the sample covariance matrix and recalling N = n+ 1,

S =
1
n

N∑
i=1

(xi − x̄)(xi − x̄)′.

There exist an orthogonal transformation of vectors

yk =
N∑
i=1

Ωkixi

such that the vectors yN =
√
Nx̄ and yk ∼ N(0,Σ), k = 1, . . . n, are indepedent, and the sample

covariance matrix is equal to

S =
1
n

n∑
i=1

yiy
′
i.

Let V = nS = Y Y ′ ∼ Wp(Σ, n), where Y = (y1, y2, . . . , yn) and each yi ∼ Np(0,Σ) and

independent. By orthogonal decomposition, Σ = Γ′ΛΓ, where Λ = diag(λ1, λ2, . . . , λp) with λi being

the ith eigenvalue of Σ and Γ is an orthogonal matrix. Let U = (u1, u2, . . . , un), where ui are iid

Np(0, I) and we can write Y = Σ1/2U where Σ1/2Σ1/2 = Σ. Define W ′ = (w1, w2, . . . , wp) = U ′Γ′

and each wi are iid. Nn(0, I). Thus, define vii = w′iwi are iid chi-squared random variables with n

degree of freedom.

From Srivastava [99],

trS =
1
n

trU ′ΣU

=
1
n

trU ′Γ′ΛΓU

=
1
n

trW ′ΛW

=
1
n

p∑
i=1

λiw
′
iwi. (A.1)
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Likewise

n2(trS)2 =
p∑
i=1

λ2
i v

2
ii + 2

p∑
i<j

λiλjviivjj (A.2)

and

n2trS2 =
p∑
i=1

λ2
i v

2
ii + 2

p∑
i<j

λiλjv
2
ij . (A.3)

Using the same approach and the commutative property of the trace operation (i.e. tr(ABC)
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= tr(CAB)), we derive,

n4trS4 = tr(W ′ΛW )(W ′ΛW )(W ′ΛW )(W ′ΛW )

= tr

[
(
p∑
i=1

λiwiw
′
i)

4

]

= tr

[
p∑
i=1

λ4
iwiw

′
iwiw

′
iwiw

′
iwiw

′
i + 4

p∑
i 6=j

λ3
iλjwiw

′
iwiw

′
iwiw

′
iwjw

′
j

+
p∑
i<j

λ2
iλ

2
j

(
4wiw′iwiw

′
iwjw

′
jwjw

′
j + 2wiw′iwjw

′
jwiw

′
iwjw

′
j

)
+

p∑
i6=j<k

λ2
iλjλk

(
8wiw′iwiw

′
iwjw

′
jwkw

′
k + 4wiw′iwjw

′
jwiw

′
iwkw

′
k

)
+

p∑
i<j<k<l

λiλjλkλl

(
8wiw′iwjw

′
jwkw

′
kwlw

′
l + 8wiw′iwjw

′
jwlw

′
lwkw

′
k

+8wiw′iwkw
′
kwjw

′
jwlw

′
l

)]

=
p∑
i=1

λ4
i (w
′
iwi)

4 + 4
p∑
i 6=j

λ3
iλj(w

′
iwi)

2(w′iwj)
2

+
p∑
i<j

λ2
iλ

2
j

(
4(w′iwi)(w

′
jwj)(w

′
iwj)

2 + 2w(w′iwj)
4
)

+
p∑

i6=j<k

λ2
iλjλk

(
8(w′iwi)(w

′
iwj)(w

′
jwk)(w′iwk) + 4(w′iwj)

2(w′iwk)2
)

+
p∑

i<j<k<l

λiλjλkλl

(
8(w′iwj)(w

′
jwk)(w′kwl)(w

′
iwl) + 8(w′iwj)(w

′
jwl)(w

′
lwk)(w′iwk)

+8(w′iwk)(w′kwj)(w
′
jwl)(w

′
iwl)

)
=

p∑
i=1

λ4
i v

4
ii + 4

p∑
i 6=j

λ3
iλjv

2
iiv

2
ij +

p∑
i<j

λ2
iλ

2
j (4viivjjv

2
ij + 2v4

ij)

+
p∑

i6=j<k

λ2
iλjλk(8viivijvjkvik + 4v2

ijv
2
ik) (A.4)

+
p∑

i<j<k<l

λiλjλkλl(8vijvjkvklvil + 8vijvjlvklvik + 8vikvjkvjlvil).
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Likewise we find,

n4trS3trS =
p∑
i=1

λ4
i v

4
ii +

p∑
i 6=j

λ3
iλj(3v

2
iiv

2
ij + v3

iivjj) + 6
p∑
i<j

λ2
iλ

2
jviivjjv

2
ij

+
p∑

i 6=j<k

λ2
iλjλk(3viiv2

ijvkk + 3viiv2
ikvjj + 6viivijvikvjk) (A.5)

+6
p∑

i<j<k<l

λiλjλkλl(viivjkvjlvkl + vjjvikvilvkl + vkkvijvilvjl + vllvijvikvjk),

n4(trS2)2 =
p∑
i=1

λ4
i v

4
ii + 4

p∑
i 6=j

λ3
iλjv

2
iiv

2
ij +

p∑
i<j

λ2
iλ

2
j (4v

4
ij + 2v2

iiv
2
jj) (A.6)

+
p∑

i 6=j<k

λ2
iλjλk(4v2

iiv
2
jk + 8v2

ijv
2
ik) + 8

p∑
i<j<k<l

λiλjλkλl(v2
ijv

2
kl + v2

ikv
2
jl + v2

ilv
2
jk),

n4trS2(trS)2 =
p∑
i=1

λ4
i v

4
ii +

p∑
i6=j

λ3
iλj(2v

2
iiv

2
ij + 2v3

iivjj) +
p∑
i<j

λ2
iλ

2
j (4viivjjv

2
ij + 2v2

iiv
2
jj)

+
p∑

i 6=j<k

λ2
iλjλk(4viiv2

ijvkk + 4viiv2
ikvjj + 2v2

iivjjvkk + 2v2
iiv

2
jk) (A.7)

+4
p∑

i<j<k<l

λiλjλkλl

(
(v2
ijvkk + v2

ikvjj + v2
jkvii)vll

+(v2
ilvjj + v2

jlvii)vkk + v2
klviivjj

)
,

and

n4(trS)4 =
p∑
i=1

λ4
i v

4
ii + 4

p∑
i 6=j

λ3
iλjv

3
iivjj + 6

p∑
i<j

λ2
iλ

2
jv

2
iiv

2
jj

+12
p∑

i 6=j<k

λ2
iλjλkv

2
iivjjvkk + 24

p∑
i<j<k<l

λiλjλkλlviivjjvkkvll. (A.8)

Consider the constants b, c∗, d, e defined above in (2.27), (2.28), (2.29), (2.30),

trS4 + b · trS3trS + c∗ · (trS2)2 + d · trS2(trS)2 + e · (trS)4

p
= η1 + η2 + η3 + η4 + η5, (A.9)
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where

η1 =
n4 − 5n3 + 5n2 + 5n− 6

n2(n2 + n+ 2)
1
n4p

p∑
i=1

λ4
i v

4
ii, (A.10)

η2 =
1
n4p

p∑
i 6=j

λ3
iλj

(
4v2
iiv

2
ij + b(3v2

iiv
2
ij + v3

iivjj) + 4cv2
iiv

2
ij + d(2v2

iiv
2
ij + 2v3

iivjj) + 4ev3
iivjj

)
=

4
n4p

p∑
i 6=j

λ3
iλj

(
v2
iiv

2
ij(n

4 − 4n3 + n2 + 6n) + v3
iivjj(−n3 + 4n2 − n− 6)

n2(n2 + n+ 2)

)
, (A.11)

η3 =
2
n4p

p∑
i<j

λ2
iλ

2
j

(
(2v2

iivjjv
2
ij + v4

ij) + 3bviiv2
ijvjj + c(2v4

ij + v2
iiv

2
jj)

+d(2viiv2
ijvjj + v2

iiv
2
jj) + 3ev2

iiv
2
jj

)
=

2
n4p

p∑
i<j

λ2
iλ

2
j

(
viiv

2
ijvjj(2n

4 − 10n3 + 12n2) + v4
ij(n

4 − 3n3 − 4n2 + 12n)
n2(n2 + n+ 2)

(A.12)

+
v2
iiv

2
jj(−2n3 + 7n2 + 3n− 18)

n2(n2 + n+ 2)

)
,

η4 =
1
n4p

p∑
i6=j<k

λ2
iλjλk

(
8viivijvjkvik + 4v2

ijv
2
ik + b(3viiv2

ijvkk + 3viiv2
ikvjj + 6viivijvikvjk)

+c(4v2
iiv

2
jk + 8v2

ijv
2
ik) + d(4viiv2

ijvkk + 4viiv2
ikvjj + 2v2

iivjjvkk + 2v2
iiv

2
jk) + e(12v2

iivjjvkk)
)

=
4
n4p

p∑
i6=j<k

λ2
iλjλk

(
v2
iiv

2
jk(−2n3 + 2n2 + 12n) + v2

ijv
2
ik(n4 − 3n3 − 4n2 + 12n)

n2(n2 + n+ 2)

+
(viiv2

ijvkk + viiv
2
ikvjj)(−3n3 + 7n2 + 6n) + v2

iivjjvkk(5n2 − 9n− 18)
n2(n2 + n+ 2)

(A.13)

+
viivijvikvjk(2n4 − 4n3 − 2n2 − 12n)

n2(n2 + n+ 2)

)
,
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where the index is read as i 6= j, i 6= k and j < k, and

η5 =
1
n4p

p∑
i<j<k<l

λiλjλkλl

(
8(vijvjkvklvil + vijvjlvklvik + vikvjkvjlvil)

+6b(viivjkvjlvkl + vjjvikvilvkl + vkkvijvilvjl + vllvijvikvjk) + 8c(v2
ijv

2
kl + v2

ikv
2
jl + v2

ilv
2
jk)

+4d(v2
ijvkkvll + v2

ikvjjvll + v2
ilvjjvkk + v2

jkviivll + v2
jlviivkk + v2

klviivjj) + 24eviivjjvkkvll
)

=
8
n4p

p∑
i<j<k<l

λiλjλkλl

(
n2(n2 + n+ 2)(vijvjkvklvil + vijvjlvklvik + vikvjkvjlvil)

n2(n2 + n+ 2)

−3n(n2 + n+ 2)(viivjkvjlvkl + vjjvikvilvkl + vkkvijvilvjl + vllvijvikvjk)
n2(n2 + n+ 2)

−
n(2n2 + 3n− 6)(v2

ijv
2
kl + v2

ikv
2
jl + v2

ilv
2
jk)

n2(n2 + n+ 2)
(A.14)

+
n(5n+ 6)(v2

ijvkkvll + v2
ikvjjvll + v2

ilvjjvkk + v2
jkviivll + v2

jlviivkk + v2
klviivjj)

n2(n2 + n+ 2)

−3(5n+ 6)viivjjvkkvll
n2(n2 + n+ 2)

)
.

A.2 Expected Value of Estimator

A.2.1 Expected Value Preliminaries

Lemma A.1. For vii = (w′iwi) and vij = (w′iwj) for any i 6= j,

E[v4
ii] = n(n+ 2)(n+ 4)(n+ 6), E[v3

ii] = n(n+ 2)(n+ 4)

E[v2
ii] = n(n+ 2), E[vii] = n,

E[viiv2
ij ] = n(n+ 2), E[v2

iiv
2
ij ] = n(n+ 2)(n+ 4),

E[v4
ij ] = 3n(n+ 2), E[v2

ij ] = n,

E[viiv2
ijvjj ] = n(n+ 2)2, E[v2

ijv
2
jk] = n(n+ 2),

E[vijvikvjk] = n, E[vijvilvjkvkl] = n,

E[viivijvikvjk] = n(n+ 2).

Proof. The first 10 results are the moments of a χ2 r.v. or can be found in Srivastava [99]. Using
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vij = (w′iwj) = (w′jwi) and E[wjw′j ] = I we obtain the following:

E[vijvikvjk] = E
[
(w′iwj)(w

′
jwk)(w′kwi)

]
= E

[
w′i(wjw

′
j)(wkw

′
k)wi

]
= E[w′iwi] = E[vii] = n

E[vijvilvjkvkl] = E
[
(w′iwj)(w

′
jwk)(w′kwl)(w

′
lwi)

]
= E[w′iwi] = E[vii] = n

E[viivijvikvjk] = E
[
(w′iwi)(w

′
iwj)(w

′
jwk)(w′kwi)

]
= E

[
(w′iwi)(w

′
iwi)

]
= E[v2

ii] = n(n+ 2)

A.2.2 Expected Value of â4

Lemma A.2. For η2, η3, η4, η5 above,

E[η2] = E[η3] = E[η4] = E[η5] = 0

Proof. Using the linearity of expected value and Lemma A.1 we find,

E[η2] =
4
n4p

p∑
i 6=j

λ3
iλj

(n(n+ 2)(n+ 4)(n4 − 4n3 + n2 + 6n)
n2(n2 + n+ 2)

+
n2(n+ 2)(n+ 4)(−n3 + 4n2 − n− 6)

n2(n2 + n+ 2)

)
=

4
n4p

p∑
i 6=j

λ3
iλj

n(n+ 2)(n+ 4)
n2(n2 + n+ 2)

(
n4 − 4n3 + n2 + 6n− n4 + 4n3 − n2 − 6n

)
= 0,
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E[η3] =
2
n4p

p∑
i<j

λ2
iλ

2
j

(
n(n+ 2)2(2n4 − 10n3 + 12n2) + 3n(n+ 2)(n4 − 3n3 − 4n2 + 12n)

n2(n2 + n+ 2)

+
n2(n+ 2)2(−2n3 + 7n2 + 3n− 18)

n2(n2 + n+ 2)

)

=
2
n4p

p∑
i<j

λ2
iλ

2
j

n(n+ 2)
n2(n2 + n+ 2)

(
(n+ 2)(2n4 − 10n3 + 12n2)

+3(n4 − 3n3 − 4n2 + 12n) + n(n+ 2)(−2n3 + 7n2 + 3n− 18)
)

=
2
n4p

p∑
i<j

λ2
iλ

2
j

n(n+ 2)
n2(n2 + n+ 2)

(
2n5 − 6n4 − 8n3 + 24n2

+3n4 − 9n3 − 12n2 + 36n− 2n5 + 3n4 + 17n3 − 12n2 − 36n
)

= 0,

E[η4] =
4
n4p

p∑
i6=j<k

λ2
iλjλk

(
n2(n+ 2)(−2n3 + 2n2 + 12n) + n(n+ 2)(n4 − 3n3 − 4n2 + 12n)

n2(n2 + n+ 2)

+
(2n2(n+ 2))(−3n3 + 7n2 + 6n) + n3(n+ 2)(5n2 − 9n− 18)

n2(n2 + n+ 2)

+
n(n+ 2)(2n4 − 4n3 − 2n2 − 12n)

n2(n2 + n+ 2)

)

=
4
n4p

p∑
i6=j<k

λ2
iλjλk

n(n+ 2)
n2(n2 + n+ 2)

(
n(−2n3 + 2n2 + 12n) + (n4 − 3n3 − 4n2 + 12n)

+2n(−3n3 + 7n2 + 6n) + n2(5n2 − 9n− 18)

+(2n4 − 4n3 − 2n2 − 12n)

)

=
4
n4p

p∑
i6=j<k

λ2
iλjλk

n(n+ 2)
n2(n2 + n+ 2)

(
− 2n4 + 2n3 + 12n2 − n4 + 3n3 + 4n2 − 12n

−6n4 + 14n3 + 12n2 + 5n4 − 9n3 − 18n2

+2n4 − 4n3 − 2n2 − 12n

)
= 0,
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E[η5] =
8
n4p

p∑
i<j<k<l

λiλjλkλl

(
n2(n2 + n+ 2)(3n)
n2(n2 + n+ 2)

− 3n(n2 + n+ 2)(4n2)
n2(n2 + n+ 2)

−n(2n2 + 3n− 6)(3n2)
n2(n2 + n+ 2)

+
n(5n+ 6)(6n3)
n2(n2 + n+ 2)

− 3(5n+ 6)n4

n2(n2 + n+ 2)

)

=
8
n4p

p∑
i<j<k<l

λiλjλkλl
n3

n2(n2 + n+ 2)

(
3(n2 + n+ 2)− 12(n2 + n+ 2)

−3(2n2 + 3n− 6) + 6n(5n+ 6)− 3n(5n+ 6)
)

=
8
n4p

p∑
i<j<k<l

λiλjλkλl
n2

n2(n2 + n+ 2)

(
3n2 + 3n+ 6− 12n2 − 12n− 24

−6n2 − 9n+ 18 + 30n2 + 36n− 15n2 − 18n
)

= 0.

Lemma A.3. For η1 defined above

E[η1] =
n(n+ 2)(n+ 4)(n+ 6)(n− 1)(n− 2)(n− 3)(n+ 1)

pn6(n2 + n+ 2)

p∑
i=1

λ4
i .

Theorem A.2. With b, c∗, d, e defined above in (2.27), (2.28), (2.29), (2.30)

τ

p

[
trS4 + b · trS3trS + c · (trS2)2 + d · trS2(trS)2 + e · (trS)4

]
(A.15)

is an unbiased estimator for a4 = (trΣ4/p) where τ is define above (2.31).

Proof. This follows from Lemma A.2 and A.3

E

[
τ

p

(
trS4 + btrS3trS + c(trS2)2 + dtrS2(trS)2 + e(trS)4

) ]

= τ

(
n(n+ 2)(n+ 4)(n+ 6)(n− 1)(n− 2)(n− 3)(n+ 1)

pn6(n2 + n+ 2)

p∑
i=1

λ4
i

)

=
1
p

p∑
i=1

λ4
i = a4.
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A.3 Variance of Estimator

We shall now find the variance of the estimator in (A.15). We first establish several Lemmas

that will allow us to derive the variance of the estimator in (A.15) based on the linear combination

of χ2 random variables.

A.3.1 Variance Preliminaries

Lemma A.4. For a random variable from the Standard Normal distribution, i.e. Z ∼ N(0, 1), all

odd central moments are zero. The first six even moments are as such,

E[Z2] = 1, E[Z4] = 3

E[Z6] = 15, E[Z8] = 105

E[Z10] = 945, E[Z12] = 10395

Lemma A.5. Let Q be an orthogonal matrix such that Aj = Q′DQ with D = diag(w′jwj , 0, . . . , 0)

and D = QAjQ
′. Given Aj, we can find xi = Qwi ∼ Nn(0, I) and it follows that xi is independently

distributed of Aj. Now xi = (xi1, . . . , xin) = Qwi ∼ Nn(0, I) and thus xi1 is independent of w′jwj

and also xik for k = 2, . . . , n, hence

E[v2
ij ] = E[w′iwjw

′
jwi] = E[w′iAjwi] = E[x2

i1w
′
jwj ]

and

E[v4
ij ] = E[(w′iwjw

′
jwi)

2] = E[(w′iAjwi)
2] = E[x4

i1(w′jwj)
2]

Proof. Aj is a function of the random variable wj , xi is a function of the random variable wi. wi

and wj are independent by defintion, hence xi and Aj are independent. Furthermore an orthogonal

transformation does not alter the distribution of a Normal random variable. Matrix algebra provides

the remaining of the derivation.

Throughout this chapter we will make extensive use of the alternative form of the variance

of a random variable, i.e.

V ar[X] = E[X2]− E[X]2
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A.3.2 Variance of η1

We will begin by finding the variance of η1. First consider the following elementary lemma

Lemma A.6. For vii = (w′iwi)

V ar[v4
ii] = 32n(n+ 2)(n+ 4)(n+ 6)(n+ 7)(n2 + 14n+ 60)

Proof.

V ar[v4
ii] = E[v8

ii]− E[v4
ii]

2

= n(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)(n+ 12)(n+ 14)− n2(n+ 2)2(n+ 4)2(n+ 6)2

= 32n(n+ 2)(n+ 4)(n+ 6)(n+ 7)(n2 + 14n+ 60)

Now consider η1 defined in (A.10)

η1 =
n4 − 5n3 + 5n2 + 5n− 6

n2(n2 + n+ 2)
1
n4p

p∑
i=1

λ4
i v

4
ii

Lemma A.7.

V ar[η1] =
32(n+ 2)(n+ 4)(n+ 6)(n+ 7)(n2 + 14n+ 60)(n4 − 5n3 + 5n2 + 5n− 6)2

n11(n2 + n+ 2)2p
a8

Proof.

V ar[η1] = V ar

[
n4 − 5n3 + 5n2 + 5n− 6

n2(n2 + n+ 2)
1
n4p

p∑
i=1

λ4
i v

4
ii

]

=
(
n4 − 5n3 + 5n2 + 5n− 6

n6(n2 + n+ 2)p2

)2 p∑
i=1

λ8
iV ar[v

4
ii]

=
32(n+ 2)(n+ 4)(n+ 6)(n+ 7)(n2 + 14n+ 60)(n4 − 5n3 + 5n2 + 5n− 6)2

n11(n2 + n+ 2)2p2

p∑
i=1

λ8
i

=
32(n+ 2)(n+ 4)(n+ 6)(n+ 7)(n2 + 14n+ 60)(n4 − 5n3 + 5n2 + 5n− 6)2

n11(n2 + n+ 2)2p
a8
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A.3.3 Variance of η2

Here we provide details on the derviation of the variance of the η2 component of our esti-

mator. Consider η2 defined in (A.11),

η2 =
4
n4p

p∑
i6=j

λ3
iλj

(
v2
iiv

2
ij(n

4 − 4n3 + n2 + 6n) + v3
iivjj(−n3 + 4n2 − n− 6)

n2(n2 + n+ 2)

)
,

From Lemma A.2, we know E[η2] = 0 and hence V ar[η2] = E[η2
2 ]. We rewrite η2 in the form

η2 =
Cη2(n)
p

p∑
i 6=j

λ3
iλjVi,j(η2)

where

Cη2(n) =
4

n6(n2 + n+ 2)

and

Vi,j(η2) = v2
iiv

2
ij(n

4 − 4n3 + n2 + 6n) + v3
iivjj(−n3 + 4n2 − n− 6) (A.16)

= v2
iiv

2
ijn1 + v3

iivjjn2

where n1 = n4 − 4n3 + n2 + 6n and n2 = −n3 + 4n2 − n− 6. For simplification of notation, we call

Vi,j(η2) = Vij . Then η2
2 can be expressed as

p2

Cη2(n)2
η2

2 =
p∑
i6=j

λ6
iλ

2
jV

2
ij + 2

p∑
i6=j<k

λ6
iλjλkVijVik + 2

p∑
i<j

λ4
iλ

4
jVijVji + 2

p∑
i 6=j 6=k

λ4
iλ

3
jλkVikVji

+
p∑

i<j 6=k

λ3
iλ

3
jλ

2
kVikVjk + 2

p∑
i<j 6=k<l

λ3
iλ

3
jλkλl(VikVjl + VilVjk)

To compute the variance of η2 we will find the expectation of all the terms above. Consider

the preliminary lemma
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Lemma A.8. For vii = (w′iwi) and vij = (w′iwj),

E[v4
iiv

4
ij ] = 3n(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)

E[v5
iiv

2
ijvjj ] = n(n+ 2)2(n+ 4)(n+ 6)(n+ 8)(n+ 10)

E[v6
iiv

2
jj ] = n2(n+ 2)2(n+ 4)(n+ 6)(n+ 8)(n+ 10)

Proof. Some applications of Lemma A.5 along with the following derivations provide the result

E[v4
iiv

4
ij ] = E[(w′iwi)

4(w′iAjwi)
2] with Aj defined in Lemma A.5

= E

( n∑
k=1

x2
ik

)4

· x4
i1 · (w′jwj)2


= E

( n∑
k=1

x2
ik

)4

· x4
i1

E [(w′jwj)2
]

Exploring the left side only,

E

( n∑
k=1

x2
ik

)4

· x4
i1


= E

x12
i1 + 4x10

i1

(
n∑
k=2

x2
ik

)
+ 6x8

i1

(
n∑
k=2

x2
ik

)2

+ 4x6
i1

(
n∑
k=2

x2
ik

)3

+ x4
i1

(
n∑
k=2

x2
ik

)
= 10395 +

(
4 · 945 + 6 · 105(n+ 1) + 4 · 15(n+ 1)(n+ 3) + 3(n+ 1)(n+ 3)(n+ 5)

)
(n− 1)

= 3(n+ 4)(n+ 6)(n+ 8)(n+ 10)

resulting in

E[v4
iiv

4
ij ] = 3n(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)

E[v5
iiv

2
ijvjj ] = E[(w′iwi)

5(w′iAjwi)(v
′
jwj)]

= E

( n∑
k=1

x2
ik

)5

· x2
i1

E[v2
jj ]
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Exploring the left side of the equation

E

( n∑
k=1

x2
ik

)5

· x2
i1


= E

[
x12
i1 + 5x10

i1

(
n∑
k=2

x2
ik

)
+ 10x8

i1

(
n∑
k=2

x2
ik

)2

+ 10x6
i1

(
n∑
k=2

x2
ik

)3

+5x4
i1

(
n∑
k=2

x2
ik

)4

+ x2
i1

(
n∑
k=2

x2
ik

)5 ]
= 10395 + 5 · 945(n− 1) + 10 · 105(n− 1)(n+ 1) + 10 · 15(n− 1)(n+ 1)(n+ 3)

+5 · 3(n− 1)(n+ 1)(n+ 3)(n+ 5) + (n− 1)(n+ 1)(n+ 3)(n+ 5)(n+ 7)

= (n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)

including the E[v2
jj ] = n(n+ 2) portion and we get

E[v5
iiv

2
ijvjj ] = n(n+ 2)2(n+ 4)(n+ 6)(n+ 8)(n+ 10)

The result

E[v6
iiv

2
jj ] = n2(n+ 2)2(n+ 4)(n+ 6)(n+ 8)(n+ 10)

follows from independent χ2 random variables

Thus

E[V 2
ij ] = E

[(
v2
iiv

2
ij(n

4 − 4n3 + n2 + 6n) + v3
iivjj(−n3 + 4n2 − n− 6)

)2]
= E

[
n2

1v
4
iiv

4
ij + 2n1n2v

5
iiv

2
ijvjj + n2

2v
6
iiv

2
jj

]
= n(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)

(
3n2

1 + 2n1n2(n+ 2) + n2
2n(n+ 2)

)
= 2n2(n− 1)(n− 2)2(n− 3)2(n+ 1)2(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)

Now consider the additional lemmas
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Lemma A.9. For vii = (w′iwi) and vij = (w′iwj),

E[v4
iiv

2
ijv

2
ik] = n(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)

E[v5
iiv

2
ijvkk] = n2(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)

E[v6
iivjjvkk] = n3(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)

Proof. The proof of these three expectation follow from E[wjw′j ] = I,

E[v4
iiv

2
ijv

2
ik] = E[(w′iwi)

4(w′iwjw
′
jwi)(w

′
iwkw

′
kwi)]

= E[(w′iwi)
4(w′iwi)(w

′
iwi)]

= E[(w′iwi)
6]

= n(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)

likewise

E[v5
iiv

2
ijvkk] = E[(w′iwi)

5(w′iwjw
′
jwi)]E[vkk]

= E[(w′iwi)
5(w′iwi)]E[vkk]

= n2(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)

and by independence

E[v6
iivjjvkk] = E[v6

ii]E[vjj ]E[vkk]

= n3(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)
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Thus for j 6= k

E[VijVik] = E[(v2
iiv

2
ijn1 + v3

iivjjn2)(v2
iiv

2
ikn1 + v3

iivkkn2)]

= E[v4
iiv

2
ijv

2
ikn

2
1 + v5

iiv
2
ijvkkn1n2 + v5

iiv
2
ikvjjn1n2 + v6

iivjjvkkn
2
2]

= n(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)
(
n2

1 + 2n1n2n+ n2
2n

2
)

= 0

Lemma A.10. For vii = (w′iwi) and vij = (w′iwj),

E[v2
iiv

4
ijv

2
jj ] = 3n(n+ 2)(n+ 4)2(n+ 6)2

E[v3
iiv

2
ijv

3
jj ] = n(n+ 2)2(n+ 4)2(n+ 6)2

E[v4
iiv

4
jj ] = n2(n+ 2)2(n+ 4)2(n+ 6)2

Proof.

E[v2
iiv

4
ijv

2
jj ] = E[(w′iwi)

2(w′iwjw
′
jwi)

2(w′jwj)
2]

= E[(w′iwi)
2(w′iAjwi)

2(w′jwj)
2]

and using Lemma A.5

= E

( n∑
k=1

x2
ik

)2

· x4
i1 · (w′jwj)4


= E

( n∑
k=1

x2
ik

)2

· x4
i1

E [(w′jwj)4
]

= E

x8
i1 + 2x6

i1

(
n∑
k=2

x2
ik

)
+ x4

i1

(
n∑
k=1

x2
ik

)2
E [(w′jwj)4

]
=

(
105 + 2 · 15(n− 1) + 3(n− 1)(n+ 1)

)
n(n+ 2)(n+ 4)(n+ 6)

= 3n(n+ 2)(n+ 4)2(n+ 6)2

E[v3
iiv

2
ijv

3
jj ] = E[(w′iwi)

3(w′iAjwi)(w
′
jwj)

3]
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and by Lemma A.5

= E

( n∑
k=1

x2
ik

)3

· x2
i1 · (w′jwj)4


= E

( n∑
k=1

x2
ik

)3

· x2
i1

E [(w′jwj)4
]

= E

x8
i1 + 3x6

i1

(
n∑
k=2

x2
ik

)
+ 3x4

i1

(
n∑
k=1

x2
ik

)2

+ x2
i1

(
n∑
k=2

x2
ik

)3
E [(w′jwj)4

]
=

(
105 + 3 · 15(n− 1) + 3 · 3(n− 1)(n+ 1) + (n− 1)(n+ 1)(n+ 3)

)
n(n+ 2)(n+ 4)(n+ 6)

= n(n+ 2)2(n+ 4)2(n+ 6)2

and E[v4
iiv

4
jj ] = n2(n+ 2)2(n+ 4)2(n+ 6)2 by independent χ2 random variables.

and thus,

E[VijVji] = E[(v2
iiv

2
ijn1 + v3

iivjjn2)(v2
jjv

2
ijn1 + v3

jjviin2)]

= E[n2
1v

2
iiv

4
ijv

2
jj + 2n1n2v

3
iiv

2
ijv

3
jj + n2

2v
4
iiv

4
jj ]

= 2n2(n+ 1)2(n+ 2)(n+ 4)2(n+ 6)2(n− 1)(n− 2)2(n− 3)2

Lemma A.11. For vii = (w′iwi) and vij = (w′iwj),

E[v2
iiv

2
ijv

2
jjv

2
ik] = n(n+ 2)2(n+ 4)2(n+ 6)

E[v3
iiv

2
ikv

3
jj ] = n2(n+ 2)2(n+ 4)2(n+ 6)

E[v3
iiv

2
ijv

2
jjvkk] = n2(n+ 2)2(n+ 4)2(n+ 6)

E[v4
iiv

3
jjvkk] = n3(n+ 2)2(n+ 4)2(n+ 6)

Proof.

E[v2
iiv

2
ijv

2
jjv

2
ik] = E[(w′iwi)

2(w′iAjwi)(w
′
jwj)

2(w′iwk)2]

By Lemma A.5 we can rewrite and isolate the wj random variables

= E

( n∑
m=1

x2
im

)2( n∑
m=1

ximxkm

)2

· x2
i1 · (w′jwj)3


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and we’ll look at the left side of the derivation

E

( n∑
m=1

x2
im

)2( n∑
m=1

ximxkm

)2

· x2
i1


= E

[
x8
i1x

2
k1 + x7

i1(L) + 2x6
i1x

2
k1

(
n∑

m=2

x2
im

)
+ x6

i1

(
n∑

m=1

ximxkm

)2

+ x5
i1(L)

+x4
i1x

2
k1

(
n∑

m=2

x2
im

)2

+ 2x4
i1

(
n∑

m=2

x2
im

)(
n∑

m=1

ximxkm

)2

+x3
i1(L) + x2

i1

(
n∑

m=2

x2
im

)2( n∑
m=1

ximxkm

)2 ]

noting that (L) are random variables that do not contribute to the expected value due to the odd-

moment of a normal rv and using previous results

E

( n∑
m=1

ximxkm

)2
 = E[(w′iwk)2]

= E[(w′iwkw
′
kwi)]

= E[w′iwi]

= n− 1

when wi is Nn−1(0, I), hence

E

( n∑
m=1

x2
im

)2( n∑
m=1

ximxkm

)2

· x2
i1


= 105 + 3 · 15(n− 1) + 3(n− 1)(n+ 1) + 2 · 3(n− 1)(n+ 1) + (n− 1)(n+ 1)(n+ 3)

= (n+ 2)(n+ 4)(n+ 6)

and

E[v2
iiv

2
ijv

2
jjv

2
ik] = n(n+ 2)2(n+ 4)2(n+ 6)
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E[v3
iiv

2
ikv

3
jj ] = E[v3

iiv
2
ik]E[v3

jj ]

= E[(w′iwi)
3(w′iwkw

′
kwi)]E[(w′jwj)

3]

= E[(w′iwi)
4)]E[(w′jwj)

3]

= n2(n+ 2)2(n+ 4)2(n+ 6)

E[v3
iiv

2
ijv

2
jjvkk] = E[(w′iwi)

3(w′iAjwi)(w
′
jwj)

2]E[(w′kwk)]

and by lemma A.5, looking at the left portion of the expectation

E[(w′iwi)
3(w′iAjwi)(w

′
jwj)

2] = E[(w′iwi)
3x2
i1]E[(w′jwj)

3]

with

E[(w′iwi)
3x2
i1] = E

x8
i1 + 3x6

i1

(
n∑

m=1

x2
im

)
+ 3x4

i1

(
n∑

m=1

x2
im

)2

+ x2
i1

(
n∑

m=1

x2
im

)3


= 105 + 3 · 15(n− 1) + 3 · 3(n− 1)(n+ 1) + (n− 1)(n+ 1)(n+ 3)

= (n+ 2)(n+ 4)(n+ 6)

and

E[v3
iiv

2
ijv

2
jjvkk] = n2(n+ 2)2(n+ 4)(n+ 6)

and

E[v4
iiv

3
jjvkk] = n3(n+ 2)2(n+ 4)2(n+ 6)

follows from independent χ2 random variables.

Thus

E[VikVji] = E[n2
1v

2
iivik2v2

ijvjj + n1n2v
3
iiv

2
ikv

4
jj + n1n2v

3
iiv

2
jjv

2
ijvkk + n2

2v
4
iiv

3
jjvkk]

= 0
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Lemma A.12. For vii = (w′iwi) and vij = (w′iwj),

E[v2
iiv

2
ikv

2
jjv

2
jk] = n(n+ 2)3(n+ 4)2

E[v2
iiv

2
ikv

3
jjvkk] = n2(n+ 2)3(n+ 4)2

E[v3
iiv

3
jjv

2
kk] = n3(n+ 2)3(n+ 4)2

Proof.

E[v2
iiv

2
ikv

2
jjv

2
jk] = E[(w′iwi)

2(w′iAkwi)(w
′
jAkwj)(w

′
jwj)

2]

and apply Lemma A.5 with respect to Ak resulting in

E[v2
iiv

2
ikv

2
jjv

2
jk] = E[(w′iwi)

2x2
i1]E[(w′jwj)

2x2
ji]E[(w′kwk)2]

by independence. We explore the terms of wi

E[(w′iwi)
2x2
i1] = E

( n∑
m=1

x2
im

)2

· x2
i1


= E

x6
i1 + 2x4

i1

(
n∑

m=2

x2
im

)
+ x2

i1

(
n∑

m=2

x2
im

)2


= 15 + 2 · 3(n− 1) + 1(n− 1)(n+ 1)

= (n+ 2)(n+ 4)

and similar for the wj term, hence

E[v2
iiv

2
ikv

2
jjv

2
jk] = E[(w′iwi)

2x2
i1]E[(w′jwj)

2x2
ji]E[(w′kwk)2]

= (n+ 2)(n+ 4)(n+ 2)(n+ 4)n(n+ 2)

= n(n+ 2)3(n+ 4)2

E[v2
iiv

2
ikv

3
jjvkk] = E[(w′iwi)

2(w′iAkwi)(w
′
kwk)(w′jwj)

3]
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and we apply Lemma A.5 and we can rewrite the expectation as

E[v2
iiv

2
ikv

3
jjvkk] = E[(w′iwi)

2x2
i1]E[(w′kwk)2]E[(w′jwj)

3]

and using the argument above for the wi component we get

E[v2
iiv

2
ikv

3
jjvkk] = E[(w′iwi)

2x2
i1]E[(w′kwk)2]E[(w′jwj)

3]

= (n+ 2)(n+ 4)n(n+ 2)n(n+ 2)(n+ 4)

= n2(n+ 2)3(n+ 4)2

and lastly

E[v3
iiv

3
jjv

2
kk] = n3(n+ 2)3(n+ 4)2

follows from independence.

E[VikVjk] = EE[n2
1v

2
iiv

2
ikv

2
jjv

2
jk + n1n2v

2
iiv

2
ikv

3
jjvkk + n1n2v

3
iiv

2
jjv

2
jkvkk + n2

2v
3
iiv

3
jjv

2
kk]

= n2
1n(n+ 2)3(n+ 4)2 + 2n1n2n

2(n+ 2)3(n+ 4)2 + n2
2n

3(n+ 2)3(n+ 4)2

= 0

Due to independence, we see the following

E[VikVjl] = E[Vik]E[Vjl]

= 0

and likewise for VilVjk, which allows us to compute

Thus

E

[
p2

Cη2(n)2
η2

2

]
= 2n2(n− 1)(n− 2)2(n− 3)2(n+ 1)2(n+ 2)(n+ 4)(n+ 6)

×

(n+ 8)(n+ 10)
p∑
i 6=j

λ6
iλ

2
j + 2(n+ 4)(n+ 6)

p∑
i<j

λ4
iλ

4
j


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with the remaining terms having an expectation of zero. We note

p∑
i6=j

λ6
iλ

2
j =

(
p∑
i=1

λ6
i

) p∑
j=1

λ2
j

−( p∑
i=1

λ8
i

)
= p2a6a2 − pa8 = p(pa6a2 − a8)

and

2
p∑
i<j

λ4
iλ

4
j =

(
p∑
i=1

λ4
i

) p∑
j=1

λ4
j

−( p∑
i=1

λ8
i

)
(A.17)

= p2a2
4 − pa8 = p(pa2

4 − a8)

and then

V ar(η2) = E
[
η2

2

]
= Cη2(n)2n2(n− 1)(n− 2)2(n− 3)2(n+ 1)2(n+ 2)(n+ 4)(n+ 6)

×
(
(n+ 8)(n+ 10)p(pa6a2 − a8) + (n+ 4)(n+ 6)p(pa2

4 − a8)
)

=
32(n− 1)(n− 2)2(n− 3)2(n+ 1)2(n+ 2)(n+ 4)(n+ 6)

n10(n2 + n+ 2)2

×
(

(n2 + 18n+ 80)a6a2 + (n2 + 10n+ 24)a2
4 −

2(n2 + 14n+ 52)
p

a8

)

A.3.4 Variance of η3, η4 and η5

Following the same derivation in the calculation for the variance of the η2 terms in section

A.3.3 we can find the variance of η3, η4 and η5. We leave out some of the tedious details of calcuating

the expectations of the random components.

Consider (A.12) and

η3 =
2
n4p

p∑
i<j

λ2
iλ

2
j

(
viiv

2
ijvjj(2n

4 − 10n3 + 12n2) + v4
ij(n

4 − 3n3 − 4n2 + 12n)
n2(n2 + n+ 2)

+
v2
iiv

2
jj(−2n3 + 7n2 + 3n− 18)

n2(n2 + n+ 2)

)

=
Cη3(n)
p

p∑
i<j

λ2
iλ

2
jVi,j(η3)
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where

Cη3(n) =
2

n6(n2 + n+ 2)

and Vi,j(η3) represents the random component.

We find

E[Vi,j(η3)Vi,k(η3)] = E[Vi,j(η3)Vj,k(η3)] = 0

and

E[V 2
i,j ] = 8n2(n− 1)(n− 2)2(n− 3)2(n+ 1)(n+ 2)(n+ 4)(n+ 6)(n3 + 15n2 + 69n+ 54)

Recalling (A.17) and using the property that η3 has mean zero and the fact the cross-

products do not constribute to the second moment, we can find the variance by

V ar[η3] =
Cη3(n)2

p2
8n2(n− 1)(n− 2)2(n− 3)2(n+ 1)(n+ 2)(n+ 4)(n+ 6)

×(n3 + 15n2 + 69n+ 54)
p∑
i<j

λ4
iλ

4
j

=
16(n− 1)(n− 2)2(n− 3)2(n+ 1)(n+ 2)(n+ 4)(n+ 6)

n10(n2 + n+ 2)2

×(n3 + 15n2 + 69n+ 54)(a2
4 −

a8

p
)

Next we consider the term (A.13)

η4 =
4
n4p

p∑
i 6=j<k

λ2
iλjλk

(
v2
iiv

2
jk(−2n3 + 2n2 + 12n) + v2

ijv
2
jk(−4n3 − 6n2 + 12n)

n2(n2 + n+ 2)

+
(viiv2

ijvkk + viiv
2
ikvjj)(−3n3 + 7n2 + 6n) + v2

iivjjvkk(5n2 − 9n− 18)
n2(n2 + n+ 2)

+
viivijvikvjk(2n4 − 4n3 − 2n2 − 12n) + v2

ijv
2
ik(n4 + n3 + 2n2)

n2(n2 + n+ 2)

)

=
Cη4(n)
p

p∑
i 6=j<k

λ2
iλjλkVi,j,k(η4)

where we define

Cη4(n) =
4

n6(n2 + n+ 2)
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and Vi,j,k(η4) is the random component. We find

E[Vi,j,k(η4)2] = 4n2(n+2)(n10+12n9−138n7−81n6+3102n5+200n4−5316n3−912n2−144n+3456)

and

E[Vi,j,k(η4)Vj,i,k(η4)] = E[Vi,j,k(η4)Vk,i,j(η4)]

= 4n2(n+ 2)(n+ 4)
(
n9 + 5n8 − 44n7 − 166n6

+493n5 − 79n4 − 1554n3 + 1380n2 + 792n− 864
)

That is, the expectation of all possible combinations of i, j, k with the restrictions of the subscript

read as i 6= j, i 6= k and j < k. Cross-product terms involving four or more subscript values have

expectation zero, i.e.

E[Vi,j,k(η4)Vi,j,l(η4)] = E[Vi,j,k(η4)Vi,k,l(η4)] = 0

and so on. This allows us to find the cross-products in the second moment of η4 and the expectation.

We note,

2
p∑

i6=j<k

λ4
iλ

2
jλ

2
k =

(
p∑
i=1

λ4
i

) p∑
j=1

λ2
j

2

−

(
p∑
i=1

λ4
i

)2

− 2

(
p∑
i=1

λ6
i

) p∑
j=1

λ2
j

+ 2

(
p∑
i=1

λ8
i

)
= p3a4a

2
2 − p2a2

4 − 2p2a6a2 + 2pa8 = p(p2a4a
2
2 − pa2

4 − 2pa6a8 + 2a8)

and

2
p∑

i6=j<k

λ2
iλ

3
jλ

3
k =

(
p∑
i=1

λ3
i

)2
 p∑
j=1

λ2
j

−( p∑
i=1

λ6
i

)(
p∑
i=1

λ2
i

)

−2

(
p∑
i=1

λ5
i

) p∑
j=1

λ3
j

+ 2

(
p∑
i=1

λ8
i

)
= p3a2

3a2 − p2a6a2 − 2p2a5a3 + 2pa8 = p(p2a2
3a2 − pa6a2 − 2pa5a3 + 2a8)
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We find the variance of η4 by calculuating its second moment and using the expectations above

V ar[η4] =
Cη4(n)2

p2

[
4n2(n+ 2)p(p2a4a

2
2 − pa2

4 − 2pa6a8 + 2a8)/2

×(n10 + 12n9 − 138n7 − 81n6 + 3102n5 + 200n4 − 5316n3 − 912n2 − 144n+ 3456)

+4(n9 + 5n8 − 44n7 − 166n6 + 493n5 − 79n4 − 1554n3 + 1380n2 + 792n− 864)

×n2(n+ 2)(n+ 4)p(p2a2
3a2 − pa6a2 − 2pa5a3 + 2a8)

]
=

64(n+ 2)
n10(n2 + n+ 2)2

[pa4a
2
2 − a2

4 − 2a6a2 + 2
pa8

2

×(n10 + 12n9 − 138n7 − 81n6 + 3102n5 + 200n4 − 5316n3 − 912n2 − 144n+ 3456)

+(n+ 4)(pa2
3a2 − a6a2 − 2a5a3 +

2
p
a8)

×(n9 + 5n8 − 44n7 − 166n6 + 493n5 − 79n4 − 1554n3 + 1380n2 + 792n− 864)

]

Likewise, it determining the variance of (A.14)

η5 =
8
n4p

p∑
i<j<k<l

λiλjλkλl

(
n2(n2 + n+ 2)(vijvjkvklvil + vijvjlvklvik + vikvjkvjlvil)

n2(n2 + n+ 2)

−3n(n2 + n+ 2)(viivjkvjlvkl + vjjvikvilvkl + vkkvijvilvjl + vllvijvikvjk)
n2(n2 + n+ 2)

−
n(2n2 + 3n− 6)(v2

ijv
2
kl + v2

ikv
2
jl + v2

ilv
2
jk)

n2(n2 + n+ 2)

+
n(5n+ 6)(v2

ijvkkvll + v2
ikvjjvll + v2

ilvjjvkk + v2
jkviivll + v2

jlviivkk + v2
klviivjj)

n2(n2 + n+ 2)

−3(5n+ 6)viivjjvkkvll
n2(n2 + n+ 2)

)
.

=
Cη5(n)
p

p∑
i<j<k<l

λiλjλkλlVi,j,k,l(η5)

with

Cη5(n) =
8

n6(n2 + n+ 2)

and Vi,j,k,l(η5) represents the random component. The cross products terms have expectation zero,

that is

E[Vi,j,k,l(η5)Vi,j,k,m(η5)] = 0

for any combination of i, j, k, l,m with 5 of more indices. The only term contributing to the variance

82



is

E[Vi,j,k,l(η5)2] = 3n3(n− 1)(n+ 2)(n2 + n+ 2)(n5 + 6n4 + 9n3 − 56n2 + 132n+ 144)

We note

24
p∑

i<j<k<l

λ2
iλ

2
jλ

2
kλ

2
l = p4a4

2 − 6p3a4a
2
2 + 8p2a6a2 + 3p2a2

4 − 6pa8

= p(p3a4
2 − 6p2a4a

2
2 + 8pa6a2 + 3pa2

4 − 6a8)

and we find the variance of η5 by calculating its second moment

V ar[η5] =
8(n− 1)(n+ 2)
n9(n2 + n+ 2)

(n5 + 6n4 + 9n3 − 56n2 + 132n+ 144)

×(p2a4
2 − 6pa4a

2
2 + 8a6a2 + 3a2

4 −
6
p
a8)

A.3.5 Covariance terms

To determine the covariance terms of η1, η2, η3, η4, and η5 we utilize the fact that E[ηi] = 0

for i = 2, 3, 4, 5. Therefore

Cov(η1, η2) = E[η1η2]

and due to indepedence of many of the random variables, we only have to explore the variables of

the form v4
iiVi,j(η2) and v4

jjVi,j(η2) (i.e. vii and Vj,k(η2) are independent). We recall Vi,j(η2) from

(A.16) and see

v4
iiVi,j(η2) = v4

ii

(
v2
iiv

2
ijn1 + v3

iivjjn2

)
= v6

iiv
2
ijn1 + v7

iivjjn2

where the v4
ii component from η1 essentially adds 4 moments to the random variable. Taking

expectations we see

E
[
v4
iiVi,j(η2)

]
= n(n+ 2)(n+ 4)(n+ 6)(n+ 8)(n+ 10)(n+ 12)(n1 + nn2)

= 0 with n1, n2 defined in (A.16).
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A similiar results holds for v4
jjVi,j(η2) except fourth moments of the vjj are incorporated. This

concept can easily be seen in Lemma A.1 in section A.2.1, specifically with the expected values of

viiv
2
ij and v2

iiv
2
ij . The additional vii will add an additional moment resulting in the (n + 4) in the

expected value. In the case of η1 and η2, we add a fourth moment of vii and vjj in the respective

calculuations to both parts of Vi,j(η2). Since both covariance terms are zero, and the other terms

are zero by independence, we determine Cov(η1, η2) = 0. Analogous results hold for the covariance

terms of η1 with η3, η4 and η5 respectfully.

When exploring Cov(η2, η3) we find the terms Vi,j(η2) and Vi,j(η3) are correlated, along with

Vj,i(η2) and Vi,j(η3) with the remaining terms uncorrelated. Derivation similar to that of section

A.3.3 leads to the result

Cov(η2, η3) =
32n2(n− 1)(n− 2)2(n− 3)2(n+ 1)2(n+ 2)(n+ 4)(n+ 6)2(n+ 8)

n12(n2 + n+ 2)2p2

p∑
i 6=j

λ5
iλ

3
j

=
32(n− 1)(n− 2)2(n− 3)2(n+ 1)2(n+ 2)(n+ 4)(n+ 6)2(n+ 8)

n10(n2 + n+ 2)2
(a5a3 −

a8

p
).

Similiar expansions to find Cov(η2, η4) and Cov(η2, η5) find no terms to be correlated.

Using analogous methods, through expansion and calculation of the expectations, we see

Cov(η3, η4) = 0, Cov(η3, η5) = 0 and Cov(η4, η5) = 0.

A.3.6 Interaction between â4 and â2

We find the covariance, or interaction, of the terms of â4 and â2. We note that the covariance

between q1 of â2 and the terms η2, η3, η4, and η5 is analogous to that of η1 with the respective terms,

resulting in

Cov(η2, q1) = Cov(η3, q1) = Cov(η4, q1) = Cov(η5, q1) = 0

Careful expansion and taking expectations, similiar to that provided above, of the random

variables finds there are no correleted terms between q2 and η1, η4 or η5 resulting in

Cov(η1, q2) = Cov(η4, q2) = Cov(η5, q2) = 0
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Expansion of of E[η2q2] and [η3q2] and finding expectations provides the following results.

Cov(η2, q2) =
16n(n− 1)(n− 2)(n− 3)(n+ 1)(n+ 2)(n+ 4)(n+ 6)

n8(n2 + n+ 2)p2

p∑
i6=j

λ4
iλ

2
j

=
16(n− 1)(n− 2)(n− 3)(n+ 1)(n+ 2)(n+ 4)(n+ 6)

n7(n2 + n+ 2)
(a4a2 −

a6

p
)

Cov(η3, q2) =
16n(n− 1)(n− 2)(n− 3)(n+ 1)(n+ 2)(n+ 4)(n+ 6)

n8(n2 + n+ 2)p2

p∑
i<j

λ3
iλ

3
j

=
8(n− 1)(n− 2)(n− 3)(n+ 1)(n+ 2)(n+ 4)(n+ 6)

n7(n2 + n+ 2)
(a2

3 −
a6

p
)

We leave the Cov(η1, q1) term for a later derivation.

A.4 Asymptotic Variances and Consistency

We simplify our variance and covariance terms by finding their asymptotic values under

assumptions (A) and (B) and as (n, p)→∞.

V (η1) ' 32
np
a8,

V (η2) ' 32
n2

(a6a2 + a2
4 −

2
p
a8) ' 32

n2
(a6a2 + a2

4),

V (η3) ' 16
n2

(a2
4 −

a8

p
) ' 16

n2
a2

4,

V (η4) ' 64
n3

(
pa4a

2
2 − (a2

4 + 2a6a2) + 2
pa8

2
+ pa2

3a2 − (a6a2 + 2a5a3) +
2
p
a8

)

' 64
n2
c
(
a4a

2
2/2 + a2

3a2

)
,

V (η5) ' 8
n4

(p2a4
2 − 6pa4a

2
2 + (9a6a2 + 3a2

4)− 6
p
a8) ' 8

n2
c2a4

2,

and

V (q1) ' 8
np
a4,

V (q2) ' 4
n2

(a2
2 −

a4

p
) ' 4

n2
a2

2,
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are provided in Srivastava [99]. Likewise,

Cov(q1, η1) ' 16
np
a6,

Cov(η2, η3) ' 32
n2

(a5a3 −
a8

p
) ' 32

n2
a5a3,

Cov(η2, q2) ' 16
n2

(a4a2 −
a6

p
) ' 16

n2
a4a2,

Cov(η3, q2) ' 8
n2

(a2
3 −

a6

p
) ' 8

n2
a2

3,

and we note that for τ in (2.31), τ2 ' 1 as n→∞.

Recall Chebyshev inequality

Lemma A.13. Chebyshev’s Inequality

For positive ε and random variable X,

P [|X − E[X]| > ε] ≤ 1
ε2
V ar[X]

which leads to the following result

Theorem A.3. The estimator â4 defined in (2.32) is an (n, p) consistent estimator for a4.

Proof. By Theorem A.2, â4 is unbiased for a4. By Chebyshev’s inequality, Lemma A.13, for any

ε > 0

P [|â4 − a4| > ε] ≤ 1
ε2
V ar[â4]

' 1
ε2

(
32
np
a8 +

32
n2

(a6a2 + a2
4) +

16
n2

(a2
4)

+
64
n2

(
ca4a

2
2/2 + ca2

3a2

)
+

8
n2

(c2a4
2) + 2

32
n2

(a5a3)

)
→ 0 as n, p→∞

hence â4 → a4 in probability and â4 is an (n, p) consistent estimator for a4 under the two assump-

tions, (A) and (B).
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A.5 Asymptotic Distribution Preliminaries

To find the asymptotic distribution of our statistic, we utilize the theory of martingale-

differences.

Lemma A.14. Let Xn,p be a sequence of random variables with Fn,p the σ-field generated by the

random variables (w1, . . . , wp), then Fn.0 ⊂ Fn,1 ⊂ . . . ⊂ Fn,p. If E [Xn,p|Fn,p−1] = 0 a.s. then

(Xn,p,Fn,p) is known as a martingale-difference array. If

(1)
p∑
j=0

E
[
(Xn,j)

2 |Fn,j−1

]
p→σ2 as (n, p)→∞

(2)
p∑
j=0

E
[
X2
n,jI(Xn,j > ε)|Fn,j−1

] p→ 0

then Yn,p =
p∑
j=0

Xn,p
D→N(0, σ2).

The second condition is known as the Lindeberg condition. The result can be found in

numerous texts, see Durrett [29] or Shiryaev [94]. The second condition can be satisfied with the

stronger Lyapounov type condition
p∑
j=0

E[X4
n,j ]→ 0.

For the q1 and η1 terms, we use a more traditional central limit theorem but note they two

will satisfy the martingale different requirements since they are iid. Consider

u2i =
λ2
i [v

2
ii − n(n+ 2)]√

n(n+ 2)(n+ 3)
, u4i =

λ4
i [v

4
ii − n(n+ 2)(n+ 4)(n+ 6)]√

n(n+ 2)(n+ 4)(n+ 6)(n3 + 21n2 + 158n+ 420)
(A.18)

and

εn =

√
(n+ 4)(n+ 6)(n+ 5)√

(n+ 3)(n+ 7)(n2 + 14n+ 60)
(A.19)

then

E[u2i] = 0, E[u4i] = 0 (A.20)

V ar[u2i] = 8λ4
i , V ar[u4i] = 32λ8

i , (A.21)

Cov[u2i, u4i] = 16λ6
i εn (A.22)
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thus ui =

 u2i

u4i

 are independently distributed random vectors for i = 1, . . . , p, with the mean

zero vector and the 2× 2 covariance matrix Min given by

Min =

 8λ4
i 16εnλ6

i

16εnλ6
i 32λ8

i

 (A.23)

We note that

Mn =
1
p

p∑
i=1

Min =

 8a4 16εna6

16εna6 32a8

 6= 0 (A.24)

and for any fixed n, Mn → M0
n 6= 0 as p → ∞ since each ai is assumed to converge by assumption

(A) and εn does not depend on p. M0
n is defined to be

M0
n =

 8a0
4 16εna0

6

16εna0
6 32a0

8

 (A.25)

and M0
n →M0 as n→∞ since εn → 1 with M0 defined as

M0 =

 8a0
4 16a0

6

16a0
6 32a0

8

 (A.26)

similarly as n→∞, Min →Mi such that

Mi =

 8λ4
i 16λ6

i

16λ6
i 32λ8

i

 (A.27)

We will make use the Lyapunov-type Central Limit Theorem from Rao [81],

Theorem A.4. Let X1, X2, . . . be a squence of independent k dimensional random variables such

that E[Xi] = 0 and Σi is the k × k covariance matrix of Xi and suppose that

1
p

p∑
i=1

Σi → Σ0 6= 0
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and for every ε > 0
1
p

p∑
i=1

∫
||X||>ε√p

||X||2dFi → 0

where Fi is the distribution function of Xi and ||X|| is the standard Euclidean norm of the vector X.

Then the random variable X1+X2+...+Xp√
p converges to the k−variate normal distribution with mean

zero and dispersion matrix Σ.

We also make use the the following inequality for random variables, found in Rao [81]

Lemma A.15. For random variables X and Y

E[(X + Y )r] ≤ Cr(E[Xr] + E[Y r])

where Cr satisfies

Cr =

 1 if r ≤ 1

2r−1 if r > 1

By (A.24), our covariance matrix converges to a non-zero matrix. Let Fi represent the

distribution function of ui.

1
p

p∑
i=1

∫
√

(u′iui)>
√
pε

(u′iui)dFi =
1
p

p∑
i=1

∫
(u′iui)>pε

2
(u′iui)dFi

≤ 1
p

p∑
i=1

1
pε2

∫
(u′iui)

2dFi

=
1

p2ε2

p∑
i=1

E[(u2
2i + u2

4i)
2]

≤ 2
p2ε2

p∑
i=1

E[u4
2i + u4

4i]

using Lemma A.15. It is easy to see that when assumption (A) is satisfied

2
p2

p∑
i=1

E[u4
2i] =

2
p2

p∑
i=1

λ8
i

E[(vii2 − n(n+ 2))4]
n2(n+ 2)2(n+ 3)2

= f2(n)
a8

p
= O

(
1
p

)
→ 0 as p→∞

where f2(n) is a function of n. That is, the 4th moment of the centralized χ2 random variable only

89



depends on n. Likewise,

2
p2

p∑
i=1

E[u4
4i] =

2
p2

p∑
i=1

λ16
i

E[(v4
ii − n(n+ 2)(n+ 4)(n+ 6))2]

n2(n+ 2)2(n+ 4)2(n+ 6)2(n3 + 21n2 + 158n+ 420)2

= f4(n)
a16

p
= O

(
1
p

)
→ 0 as p→∞

whence,
1
p

p∑
i=1

∫
√

(u′iui)>
√
pε

(u′iui)dFi ≤
2

p2ε2

p∑
i=1

E[u4
2i + u4

4i]→ 0. (A.28)

By (A.24) and (A.28), we can apply Theorem A.4 and

1
√
p

p∑
i=1

ui ∼ N2(0,M0
n) as p→∞ (A.29)

and we note

1
√
p

p∑
i=1

ui =
1
√
np

p∑
i=1

 λ2
i (v

2
ii−n(n+2))√

(n+2)(n+3)

λ4
i (v

4
ii−n(n+2)(n+4)(n+6)√

(n+2)(n+4)(n+6)(n3+21n2+158n+420)

 . (A.30)

As p→∞ and n→∞ it follows

1
√
p

p∑
i=1

ui → N2(0,M0). (A.31)

Likewise by the standard multivariate Central Limit Theorem, we note that as n→∞ with

p fixed,

ui → N2(0,Mi), i = 1, . . . , p

for Mi defined in (A.27). Letting

M =
1
p

(M1 + . . .+Mp)

which will converge to M0 as p→∞ by assumption (A). The ui are asymptotically independently

distributed, it follows from the above that as n→∞ and p→∞

1
√
p

p∑
i=1

ui → N2(0,M0).
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We note this allows us to interchange the convergence order and provides us with a general (n, p)

convergence result.

A.6 Asymptotic Normality of Test Statistic

Let

M =
1
p

(M1 +M2 + . . .+Mp) =

 8a4 16a6

16a6 32a8

 (A.32)

and M →M0 as p→∞ due to assumption (A). Without loss of generality we replace M0 with M

and note that

q1 =
n− 1
n3p

p∑
i=1

λ2
i v

2
ii

' 1
n2p

p∑
i=1

λ2
i v

2
ii

and

η1 =
n4 − 5n3 + 5n2 + 5n− 6

n2(n2 + n+ 2)
1
n4p

p∑
i=1

λ4
i v

4
ii

' 1
n4p

p∑
i=1

λ4
i v

4
ii.

This leads to the following theorems

Theorem A.5. As n and p→∞

√
np

 q1

η1

→ N2


 a2

a4

 ,M


Proof. Some manipulations of the ui in (A.30) provide the result.

q1 ' 1
n2p

p∑
i=1

λ2
i v

2
ii

=
1
np

p∑
i=1

λ2
i v

2
ii

n

which appears as a biased version of the ui component for λ2
i multiplied by 1√

np for large n. Applying

91



Theorem A.4 and multiplying by an additional
√
np provides the result.

q1 '
√
np

1
np

p∑
i=1

λ2
i v

2
ii

n
=

1
√
np

p∑
i=1

λ2
i v

2
ii

n
∼ N(a2, 8a4)

Likewise for the η1 component of ui

η1 ' 1
n4p

p∑
i=1

λ4
i v

4
ii

=
1
np

p∑
i=1

λ4
i v

4
ii

n3

which appears as a biased version of the λ4
i component of ui for large n. As before,

η1 '
√
np

1
np

p∑
i=1

λ4
i v

4
ii

n3
=

1
√
np

p∑
i=1

λ4
i v

4
ii

n3
∼ N(a4, 32a8)

Combining into a vector completes the proof.

The normality of the other components require use of the Martingale Difference approach.

We provide all the details of the convergence for η2 to normality under general asymptotics. Some of

the tedious algebraic details for the other terms are not provided and are straightfoward expections,

or conditional expectations. Recall that each term, q2, η2, η3, η4, and η5, was constructed to have

mean zero. With assumption (B), the argument for the asymptotic normality of each term follows

the same methodology. We further note that the variance of each term is written with a p
n term

rather than the concentration. We keep the term written this way as it will disappear following an

application of the delta method in later work. First we recall a result from Srivastava [99],

Theorem A.6. Under assumption (A) and (B), for q2 defined above

√
npq2

D→N
(

0, 4
p

n
a2

2

)
(A.33)

Theorem A.7. Under assumptions (A) and (B), for η2 defined in (A.11)

√
npη2

D→N
(

0, 32
p

n
(a6a2 + a2

4)
)

(A.34)

Proof. Define the σ-field generated by the random variables Fn,j = σ{w1, w2, . . . wj}. We then
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rewrite η2 as

nη2 =
K2

p

p∑
i 6=j

λ3
iλjVij =

K2

p

p∑
i<j

λ3
iλjVij + λiλ

3
jVji

=
K2

p

p∑
j=2

j−1∑
i=1

λ3
iλjVij + λiλ

3
jVji

using the notation from Section A.3.3 and

K2 =
4

n5(n2 + n+ 2)
.

Define

Xn,j =
j−1∑
i=1

K2

p

(
λ3
iλjVij + λiλ

3
jVji

)
=

j−1∑
i=1

Yij

and note the following conditional expectations

E[v2
iiv

2
ij |Fn,j−1] = v3

ii, E[v3
iivjj |Fn,j−1] = nv3

ii,

E[v2
jjv

2
ij |Fn,j−1] = (n+ 2)(n+ 4)vii, E[v3

jjvii|Fn,j−1] = n(n+ 2)(n+ 4)vii,

hence E[Vij |Fn,j−1] = 0 and E[Vji|Fn,j−1] = 0, so E[Xn,j |Fn,j−1] = 0. Following the methodology

from Section A.3.3 we can calculate and show that condition (1) from Lemma A.14 holds. Begin by

noting

X2
n,j =

j−1∑
i=1

Y 2
ij + 2

j−1∑
i<k

YijYkj . (A.35)

We use the well known result about expectations

E[E[X2
n,j |Fn,j−1]] = E[X2

n,j ]

and

E[X2
n,j ] = E

(j−1∑
i=1

Yij

)2


=
j−1∑
i=1

E[Y 2
ij ] + 2

j−1∑
i<k

E[YijYkj ].
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By the methodology from Section A.3.3,

E[YijYkj ] = 0

and for large n

j−1∑
i=1

E[Y 2
ij ] =

j−1∑
i=1

K2
2

p2

(
λ6
iλ

2
jE[V 2

ij ] + 2λ4
iλ

4
jE[VijVji] + λ2

iλ
6
jE[V 2

ji]
)

=
j−1∑
i=1

16
O (n14)

1
p2

(
λ6
iλ

2
jO
(
n14
)

+ 2λ4
iλ

4
jO
(
n14
)

+ λ2
iλ

6
jO
(
n14
))

=
16
p

(
λ2
ja6 + 2λ4

ja4 + λ6
ja2

)
.

Hence

E

 p∑
j=2

E
[
X2
n,j |Fn,j−1

] =
p∑
j=2

E[X2
n,j ]

=
p∑
j=2

16
p

(
λ2
ja6 + 2λ4

ja4 + λ6
ja2

)
= 32(a6a2 + a2

4).

If we can show that

V ar

 p∑
j=2

E
[
X2
n,j |Fn,j−1

]→ 0 as (n, p)→∞,

then by the law of large numbers, condition (1) of Lemma A.14 will be satisfied.

Using (A.35) we can find the conditional expectation given the σ-field Fn,j−1. It is fairly

straightforward to show

E[YijYkj |Fn,j−1] = 0.

Hence

E[X2
n,j |Fn,j−1] =

j−1∑
i=1

E[Y 2
ij |Fn,j−1]

and for large n

E[Y 2
ij |Fn,j−1] =

K2
2

p2

(
λ6
iλ

2
jO(n8)v6

ii + 2λ4
iλ

4
jO(n10)v4

ii + λ2
iλ

6
jO(n12)v2

ii

)
. (A.36)
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Utilizing the triangular sequencing allows us to compute

V ar

 p∑
j=2

E
[
X2
n,j |Fn,j−1

] =
p−1∑
i=1

V ar

 p∑
j=i+1

E[Y 2
ij |Fn,j−1]


and from (A.36)

p−1∑
i=1

V ar

 p∑
j=i+1

E[Y 2
ij |Fn,j−1]

 ≤ K4
2

p2

p∑
i=1

(
λ12
i a

2
2O(n16)V ar[v6

ii] + λ8
i a

2
4O(n20)V ar[v4

ii]

+λ4
i a

2
6O(n24)V ar[v2

ii] + λ10
i a2a4O(n18)Cov(v6

ii, v
4
ii)

+λ8
i a2a6O(n20)Cov(v6

ii, v
2
ii) + λ6

i a6a4O(n22)Cov(v4
ii, v

2
ii)
)

Its straightforward to calculate V ar[v6
ii] = O(n11) and the other variance and covariance terms.

When including the K4
2 = O(n−28) it is easy to see that V ar

[
E[Y 2

ij |Fn,j−1]
]

= O(n−1p−2). From

here its clear that V ar
[∑p

j=2E
[
X2
n,j |Fn,j−1

]]
= O((np)−1)→ 0 as (n, p)→∞.

To show the Lyapounov type condition consider

X4
n,j =

j−1∑
i=1

Y 4
ij + 4

j−1∑
i 6=k

Y 3
ijYkj + 6

j−1∑
i<k

Y 2
ijY

2
kj + 12

j−1∑
i 6=k<l

Y 2
ijYkjYlj + 24

j−1∑
i<k<l<m

YijYkjYljYmj

and only the Y 4
ij and Y 2

ijY
2
kj have non-zero expectation. For large n

j−1∑
i=1

E
[
Y 4
ij

]
=

256
p3

(
λ4
ja12 + 4λ6

ja10 + 6λ8
ja8 + 4λ10

j a6 + λ12
j a4

)
and

j−1∑
i<k

E
[
Y 2
ijY

2
kj

]
=

256
p2

(
λ4
ja

2
6 + 4λ6

ja4a6 + 4λ8
ja

2
4 + 2λ8

ja2a6 + 4λ10
j a2a4 + λ12

j a
2
2

)
.

Hence
p∑
j=2

E
[
X4
n,j

]
=

256
p2

O(1) +
256
p
O(1)→ 0 as (n, p)→∞

and we have satisfied the second condition of Lemma A.14. This completes the proof for the asymp-

totic normality of nη2. We utilize assumption (B) to rewrite our result with the same convergent

rate of
√
np.
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Theorem A.8. Under assumptions (A) and (B), for η3 defined in (A.12)

√
npη3

D→N
(

0, 16
p

n
a2

4

)
(A.37)

Proof. This proof follows that or η2, we begin by writing

nη3 =
K3

p

p∑
j=2

j−1∑
i=1

λ2
iλ

2
jWij =

p∑
j=2

Xn,j

with

K3 = nCη3(n) =
2

n5(n2 + n+ 2)

and Wij = Vi,j(η3) being the random components of η3. With respect to the σ-field generated as

Fn,j = σ{w1, . . . , wj} we find the conditional expectations

E[viiv2
ijvjj |Fn,j−1] = v2

ii(n+ 2)

E[v4
ij |Fn,j−1] = 3v2

ii

E[v2
iiv

2
jj |Fn,j−1] = v2

iin(n+ 2)

and thus E[Wij |Fn,j−1] = 0 and η3 satisfies the conditions of martingale difference.

We note for large n

E

(j−1∑
i=1

K3

p
λ2
iλ

2
jWij

)2
 =

K2
3

p2

j−1∑
i=1

λ4
iλ

4
jE[W 4

ij ]

=
16
p
λ4
ja4

and from this we see

E

 p∑
j=2

X2
n,j

 = 16a2
4

Like in η2, if we can show that

V ar

 p∑
j=2

E
[
X2
n,j |Fn,j−1

]→ 0 as (n, p)→∞
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then by the law of large numbers condition 1 of Lemma A.14 will be satisfied. It is straightforward

to show

E[WijWkj |Fn,j−1] = 0.

and hence

E[X2
n,j |Fn,j−1] =

p∑
i=1

λ4
iλ

4
jE[W 2

ij |Fn,j−1].

Again we use the triangular sequencing of the summation and see

V ar

 p∑
j=2

E
[
X2
n,j |Fn,j−1

] =
p−1∑
i=1

V ar

 p∑
j=i+1

E[W 2
ij |Fn,j−1]

 .
As with the η2 component, when including the K4

3 term, its a straightforward calculation to de-

termine that V ar
[∑p

j=i+1E[W 2
ij |Fn,j−1

]
≤ O(n−1p−2) and hence V ar

[∑p
j=2E

[
X2
n,j |Fn,j−1

]]
≤

O((np)−1). Hence we know the first condition of Lemma A.14 is satisfied. To show condition two,

consider the Lyapounov condition.

We begin by noting that for large n

E

(j−1∑
i=1

K3

p
λ2
iλ

2
jWij

)4
 =

K4
3

p4

(
j−1∑
i=1

λ8
iλ

8
jE[W 4

ij ] + 6
j−1∑
i<k

λ4
iλ

4
kλ

8
jE[W 2

ijW
2
kj ]

)

=
256
p3

λ8
ja8 +

256
p2

λ8
ja

2
4

and thus

E

p∑
j=2

[
X4
n,j

]
= 256a2

8O

(
1
p2

)
+ 256a8a

2
4O

(
1
p

)
→ 0.

All the conditions of Lemma A.14 are satisfied and this completes the proof. Using assumption (B)

we can write the result with a
√
np convergent rate.

Theorem A.9. Under assumptions (A) and (B), for η4 defined in (A.13)

√
npη4

D→N

(
0, 64c

p

n

(
a4a

2
2

2
+ a2

3a2

))
(A.38)
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Proof. We begin the proof by first rewriting η4 as

nη4 =
K4

p

p∑
k=3

k−1∑
j=2

j−1∑
i=1

λ2
iλjλkVijk + λiλ

2
jλkVjik + λiλjλ

2
kVkij =

p∑
k=3

Xn,k

with

K4 =
4

n5(n2 + n+ 2)

and Vijk, Vjik and Vkij being the random components. Define the σ-field generated by the first k

random variables, Fn,k = σ{wi, . . . , wk} and straightforward calculations show

E[v2
iiv

2
jk|Fn,k−1] = v2

iivjj

E[v2
ijv

2
ik|Fn,k−1] = viiv

2
ij

E[viiv2
ijvkk|Fn,k−1] = viiv

2
ijn

E[viiv2
ikvjj |Fn,k−1] = v2

iivjj

E[v2
iivjjvkk|Fn,k−1] = v2

iivjjn

E[viivijvikvjk|Fn,k−1] = viiv
2
ij

and hence E[Vijk|Fn,k−1] = 0. Likewise

E[v2
jjv

2
ik|Fn,k−1] = v2

jjvii

E[v2
ijv

2
jk|Fn,k−1] = vjjv

2
ij

E[vjjv2
ijvkk|Fn,k−1] = vjjv

2
ijn

E[vjjv2
jkvii|Fn,k−1] = v2

jjvii

E[v2
jjviivkk|Fn,k−1] = v2

jjviin

E[vjjvijvjkvik|Fn,k−1] = vjjv
2
ij

and hence E[Vjik|Fn,k−1] = 0. The conditional expectation of the Vkij component can be tricky. We
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note the first few conditional expectations

E[v2
kkv

2
ij |Fn,k−1] = v2

ijn(n+ 2)

E[vkkv2
jkvii|Fn,k−1] = viivjj(n+ 2)

E[vkkv2
ikvjj |Fn,k−1] = viivjj(n+ 2)

E[v2
kkviivjj |Fn,k−1] = viivjjn(n+ 2)

E[vkkvikvjkvij |Fn,k−1] = v2
ij(n+ 2)

as they are straightforward with an application of Lemma A.5. To find the conditional expectation

of the v2
ikv

2
jk term we perform the following calculation

E[v2
ikv

2
jk|Fn,k−1] = E

( n∑
m=1

ximxkm

)2( n∑
m=1

xjmxkm

)2 ∣∣∣∣∣Fn,k−1

 .
This comes from the definition of the wis. By expanding out the summations and calculating the

individual conditional expectations we see many of the terms are zero. We are left with

E[v2
ikv

2
jk|Fn,k−1] = 2v2

ij + viivjj .

From here, we see that E[Vkij |Fn,k−1] = 0 and hence η4 satisfies the conditions to be a martingale

difference. As before, we will consider the expectation of the second moment. We note we need to

use assumption (B), p
n ' c for large (n, p). Consider for large n,

E[E[X2
n,k|Fn,k−1]] = E[X2

n,k]

=
16

O(n14)
1
p2

k−1∑
j=2

j−1∑
i=1

O(4n13)
(
λ4
iλ

2
jλ

2
k + 2λ3

iλ
3
jλ

2
k + 2λ3

iλ
2
jλ

3
k + λ2

iλ
4
jλ

2
k

+2λ2
iλ

3
jλ

3
k + λ2

iλ
2
jλ

4
k

)
=

64
p
c

(
a4a2λ

2
k

2
+ a2

3λ
2
k + a2a3λ

3
k +

a2
2λ

4
k

2

)

which leads to the following result

E

[
p∑
k=3

E[X2
n,k|Fn,k−1]

]
=

p∑
k=3

E[X2
n,k] = 64c

(
a4a

2
2

2
+ a2

3a2

)
.
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As with the previous proofs, if we can show the variance goes to zero, we have satisfied condition 1

of Lemma A.14. Based on how we rewrote η4 above, elementary calculations show that

E[X2
n,k|Fn,k−1] =

k−1∑
j=2

j−1∑
i=1

E[Y 2
ijk|Fn,k−1]

where the Y 2
ijk represents the eigenvalues and random components. Thus

V ar

[
p∑
k=3

E[Xn,k−1|Fn,k−1]

]
=

p∑
j=2

j−1∑
i=1

V ar

[
p∑
k=3

E[Y 2
ijk|Fn,k−1]

]

As before, we bound the Variance term by the second moment. Using the methodology similar to

calcuating the variance of η4, recalling K4, calculations show that under assumptions (A)

V ar

[
p∑
k=3

E[Y 2
ijk|Fn,k−1]

]
≤ O

(
1

p2n2

)
.

Now with assumption (B) and handling the double summation, we see

V ar

[
p∑
k=3

E[Xn,k−1|Fn,k−1]

]
≤ O

(
1
np

)

and hence by the Law of Large numbers condition 1 is satisfied.

Using similar methods to above, and like that of the previous proofs. Utilizing, assumption

(B),

p∑
k=3

E[X4
n,k] = O

(
1
p

)
→ 0.

Hence condition 2 is also satisfied. Thus by the Martingale-Difference approach, nη4 is approximately

a normal random variable. Utilizing assumption (B) allows us to write it with the same convergence

rate as q1 and η1.

Theorem A.10. Under assumptions (A) and (B), for η5 defined in (A.14)

√
npη5

D→N
(

0, 8
p

n
c2a4

2

)
(A.39)
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Proof. Rewrite η5 as

nη5 =
K5

p

p∑
l=4

l−1∑
k=3

k−1∑
j=2

j−1∑
i=1

λiλjλkλlVijkl =
p∑
l=4

Xn,l

with

K5 =
8

n5(n2 + n+ 2)
.

We calculate the following conditional expectations when conditioning on the σ-field defined as

Fn,l = σ{w1, . . . , wl},

E[vijvjkvklvil|Fn,l−1] = vijvjkvik

E[vijvjlvklvik|Fn,l−1] = vijvjkvik

E[vikvjkvjlvil|Fn,l−1] = vijvjkvik

E[viivjkvjlvkl|Fn,l−1] = viiv
2
jk

E[vjjvikvilvkl|Fn,l−1] = vjjv
2
ik

E[vkkvijvilvjl|Fn,l−1] = vkkv
2
ij

E[vllvijvikvjk|Fn,l−1] = n · vijvikvjk

E[v2
ijv

2
kl|Fn,l−1] = v2

ijvkk

E[v2
ikv

2
jl|Fn,l−1] = v2

ikvjj

E[v2
ilv

2
jk|Fn,l−1] = v2

jkvii

E[v2
ijvkkvll|Fn,l−1] = n · v2

ijvkk

E[v2
ikvjjvll|Fn,l−1] = n · v2

ikvjj

E[v2
ilvjjvkk|Fn,l−1] = viivjjvkk

E[v2
jkviivll|Fn,l−1] = n · v2

jkvii

E[v2
jlviivkk|Fn,l−1] = viivjjvkk

E[v2
klviivjj |Fn,l−1] = viivjjvkk

E[viivjjvkkvll|Fn,l−1] = n · viivjjvkk.

Thus we calculate E[Xn,l|Fn,l−1] = 0 and we can apply the martingale difference central limit
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theorem. Straightfoward calculations show

E

[
p∑
l=4

E[X2
n,l|Fn,l−1]

]
=

p∑
l=4

E[X2
n,l] = 8c2a4

2

Its fairly straightforward to show

V ar

[
p∑
l=4

E[X2
n,l|Fn,l−1

]
=
K4

5

p4

p−1∑
k=3

k−1∑
j=2

j−1∑
i=1

V ar

[
p∑
l=4

λ2
iλ

2
jλ

2
kλ

4
lE[V 2

ijkl|Fn,l−1]

]
.

Recalling assumption (B) to handle all the summations, we find

V ar

[
p∑
l=4

E[X2
n,l|Fn,l−1

]
≤ O

(
1
np

)
→ 0,

Using similiar methods we find
p∑
l=4

E[X4
n,l] = O

(
1
p

)
→ 0

and hence both conditions of Lemma A.14 are satisfied. We utilize assumption (B) to express the

result with a
√
np convergence rate completes the result.

The marginal distribution of each term and the martingale-difference approach provides the

following important result,

Theorem A.11. Under assumptions (A) and (B), as (n, p)→∞

√
np



q1

η1

q2

η2

η3

η4

η5



D→N





a2

a4

0

0

0

0

0



,



σ2
q1 σq1η1 0 0 0 0 0

σq1η1 σ2
η1 0 0 0 0 0

0 0 σ2
q2 σq2η2 σq2η3 0 0

0 0 σq2η2 σ2
η2 ση2η3 0 0

0 0 σq2η3 ση2η3 σ2
η3 0 0

0 0 0 0 0 σ2
η4 0

0 0 0 0 0 0 σ2
η5





,

where σ2
q1 , σ2

η1 and σq1η1 are found in the M matrix defined in (A.32) and σ2
q2 , σ2

η2 , σ2
η3 , σ2

η4 , and σ2
η5

are the asymptotic variances in (A.33), (A.34), (A.37), (A.38) and (A.39) respectively and σq2η2 ,

σq2η3 , and ση2η3 are the asymtotic covariance terms of q2 and η2 and η3 defined in section A.3.6
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with the
√
np convergence rate.

Proof. Consider a set of arbitrary non-zero constants kis such that

√
npK =

√
np (k1(q1 − a2) + k2(η1 − a4) + k3q2 + k4η2 + k5η3 + k6η4 + k7η5)

and without loss of generality, k1 + . . . + k7 = 1. With respect to the increasing set of σ-fields,

Fn,l = σ{w1, . . . , wl} we note that K will satisfy the conditions of Lemma A.14 since each term also

satisfies the requirements. Calculate the variance of K (condition (1)) by computing the variance

and covariance of the individual terms. To satisfy condition (2) of Lemma A.14 we will use the well

known inequality for any random variables Y1, . . . , Yn

E

∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
p

≤ np−1
n∑
i=1

E[|Yi|p]

and the Lyapounov condition. That is,

E[K4] ≤ 73
(
k4

1E[(q1 − a2)4] + . . .+ k4
7E[η4

5 ]
)

and if each component goes to zero, then the fourth moment of K will also go to zero. This results

in asymptotic joint-normality.

A simple linear transformation provides the result

Corollary A.1.

√
np

 â2

â4

 D→N2


 a2

a4

 ,

 σ2
2 σ24

σ24 σ2
4




where σ2
2, σ24 and σ2

4 are the asymptotic variance and covariance of â2 and â4 defined as

σ2
2 = 8a4 + 4

p

n
a2

2

σ24 = 16a6 +
16p
n
a4a2 +

8p
n
a2

3
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and

σ2
4 = 32a8 +

32
n

(pa6a2 + pa2
4) +

16
n
pa2

4

+
64pa5a3

n
+

32pca4a
2
2

n
+

64pca2
3a2

n
+

8pc2a4
2

n

= 32a8 +
48p
n
a2

4 +
32p
n
a6a2 +

64p
n
a5a3 +

32p
n
a4a

2
2c+

64p
n
a2

3a2c+
8p
n
a4

2c
2

Here we include a p
n term in many of the terms, but note they will go away following an application

of the delta method and some algebra.

We note our test statistic is

T = ψ̂2 − 1 =
â4

â2
2

− 1

and recalling that â4 and â2 are (n, p)-consistent estimators for a4 and a2 respectively, an application

of the delta method leads to the result.

Theorem A.12. For large (n, p), T is approximately distributed as

T ∼ N(ψ2 − 1, ξ2)

where

ξ2 =
32a8

npa4
2

+
32a6

n2a3
2

+
32a3

4

npa6
2

+
32ca4

n2a2
2

+
64ca2

3

n2a3
2

− 64a4a6

npa5
2

− 32a4a
2
3

n2a5
2

+
64a5a3

n2a4
2

+
8c2

n2

Proof.
∂T

∂â2
= −2â4

â3
2

and
∂T

∂â4
=

1
â2

2

Thus asymptotically, T ∼ N(ψ2 − 1, ξ2) where

ξ2 =
1
np

(
−2â4

â3
2

,
1
â2

2

) σ2
2 σ24

σ24 σ2
4


 − 2â4

â3
2

1
â2
2


' 32a8

npa4
2

+
32a6

n2a3
2

+
32a3

4

npa6
2

+
32ca4

n2a2
2

+
64ca2

3

n2a3
2

− 64a4a6

npa5
2

− 32a4a
2
3

n2a5
2

+
64a5a3

n2a4
2

+
8c2

n2
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and we note that under H0, where λi = λ for all i = 1, . . . , p we have

ξ2 =
8(8 + 12c+ c2)

n2

This leads to the following theorem,

Theorem A.13. Proof of Theorem 2.2.3

Under assumptions (A) and (B),

n√
8(8 + 12c+ c2)

(T − γ2 + 1) D→N(0, ξ2
2) (A.40)

with

ξ2
2 =

1
(8 + 12c+ c2)a6

2

(4
c
a3

4 −
8
c
a4a2a6 − 4a4a2a

2
3 +

4
c
a2

2a8 (A.41)

+4a6a
3
2 + 8a2

2a5a3 + 4ca4a
4
2 + 8ca2

3a
3
2 + c2a6

2

)
.

Proof. The results follows from Theorem A.12

Corollary A.2. Proof of Corollary 2.2.2

Under H0 : γ2 = 1 and assumptions (A) and (B),

n√
8(8 + 12c+ c2)

(
â4

â2
2

− 1
)

D→N(0, 1) (A.42)

Proof. This follows from the above theorems.

A.6.1 Asymptotic Properties

Here we consider the (n, p)-asymptotic properties of our test statistic. In the previous section

we showed the test statistic has a Normal distribution as (n, p) → ∞. We now consider the power
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function of our test statistic.

P (Reject H0|H1 true) = P

(
n√

8(8 + 12c+ c2)

(
â4

â2
2

− 1
)
> zα|(A.40)

)

= P

 n√
8(8+12c+c2)

(
â4
â2
2
− a4

a2
2

)
ξ2

>
zα − n√

8(8+12c+c2)

(
a4
a2
2
− 1
)

ξ2


= Φ

 n√
8(8+12c+c2)

(
a4
a2
2
− 1
)
− zα

ξ2


To determine the behavoir of the power function we first consider the bahavoir of ξ2.

Lemma A.16. Under assumptions (A) and (B), as (n, p)→∞, ξ2
2 → O(1).

Proof. The proof can be seen by (A.41).

For large (n, p), we can rewrite the power function as follows

Φ

 n
(
a4
a2
2
− 1
)

ξ2
√

8(8 + 12c+ c2)
− zα
ξ2

 ≈ Φ
(

Ξ2 −
zα
ξ2

)

Lemma A.17. Under assumptions (A) and (B), as (n, p)→∞, Ξ2 → O(n)→∞ and zα
ξ2
→ O(1).

Proof. The results follow from Lemma A.16 and algebra.

Hence we can determine the behavor of the power function under general asymptotics.

Theorem A.14. Proof of Theorem 2.2.4

Under assumptions (A) and (B), as (n, p)→∞, the power function,

P (Reject H0|H1 true) ' Φ
(

Ξ2 −
zα
ξ2

)
as (n, p)→∞

will converge to 1 and hence our test is n, p consistent.

Proof. The proof follows Lemmas A.16, A.17 and the well known properties of the Standard Normal

CDF (Φ).
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A.6.2 Comparison to Srivastava’s Test Statistic for Sphericity

We begin by noting the power of the test defined in Srivastava [99] for large (n, p),

Φ

 n
2

(
a2
a2
1
− 1
)
− zα

ξ1

 (A.43)

where

ξ2
1 =

2n
(
a4a

2
1 − 2a1a2a3 + a3

2

)
pa6

1

+
a2

2

a4
1

We note the asymptotic behavoir of the variance under assumptions (A) and (B). As (n, p) → ∞,

ξ2
1 → O(1). Hence we can determine the power of (A.43). As (n, p)→∞, power of the test defined

in Srivastava [99] (A.43)→ 1.

Thus we can consider the two test to be asymptotically equivalent.

107



Appendix B Technical Details for Shrinkage Estimators

In this section, we build on some of the work from the previous Appendix with the intent

to apply it to the shrinkage estimation problem from Chapter 3. We start by providing proof to the

well known result

Lemma B.1.

E[tr(S2)] =
n+ 1
n

trΣ2 +
1
n

(trΣ)2 (B.1)

Proof. Recall equation (A.3)

trS2 =
1
n2

 p∑
i=1

λ2
i v

2
ii + 2

p∑
i<j

λiλjv
2
ij


Taking expectations and using Lemma A.1 we see

E[trS2] =
1
n2

 p∑
i=1

λ2
iE[v2

ii] + 2
p∑
i<j

λiλjE[v2
ij ]


=

n(n+ 2)
n2

p∑
i=1

λ2
i + 2

n

n2

p∑
i<j

λiλj

=
n+ 2
n

trΣ2 +
1
n

(
(trΣ)2 − trΣ2

)
=

n+ 1
n

trΣ2 +
1
n

(trΣ)2

Lemma B.2.

E[tr(D2)] =
n+ 2
n

trΨ2 (B.2)

Proof. It is well known that for each sii from a sample of size N = n+ 1,

n
sii
σii
∼ χ2

n

hence

tr(D) =
p∑
i=1

sii =
1
n

p∑
i=1

σiivii
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where vii is a χ2 random variable with n degrees of freedom. Because D is a diagonal matrix,

tr(D2) =
p∑
i=1

s2
ii =

1
n2

p∑
i=1

σ2
iiv

2
ii.

Taking expecations provides the result,

E[tr(D2)] =
1
n

p∑
i=1

σ2
iiE[v2

ii]

=
n(n+ 2)

n2
σ2
ii

=
n+ 2
n

trΨ2

Lemma B.3.

E[tr(SD)] = E[tr(DS)] = E[tr(D2)] (B.3)

Proof. This proof follows from some linear algebra. tr(DS) = tr(SD) by Properties of the trace

operator. Furthermore, D is a diagonal matrix of the diagonal elements of S. SD will have diagonal

elements (s2
11, . . . , s

2
pp) which is the same as D2.

We define

â∗2 =
n

n+ 2
tr(D2)/p (B.4)

â∗2 is clearly unbiased for a∗2 = trΨ2/p, see Lemma B.2.

Lemma B.4.

Var(â∗2) ' 8
np
a∗4
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Proof. We first note that n
n+2 ' 1 for large n.

Var(â∗2) ' 1
p

Var
(
tr(D2)

)
=

1
n4p2

p∑
i=1

σ4
iiVar(v2

ii)

=
1

n4p2

p∑
i=1

σ4
ii

(
E[v4

ii]− E[v2
ii]

2
)

=
1

n4p2

p∑
i=1

σ4
ii

(
n(n+ 2)(n+ 4)(n+ 6)− n2(n+ 2)2

)
=

n(n+ 2)
n4p2

p∑
i=1

σ4
ii

(
n2 + 10n+ 24− n2 − 2n

)
=

8n(n+ 2)(n+ 3)
n4p

a∗4 '
8
np
a∗4

Theorem B.1. â∗2
p→ a∗2 as (n, p)→∞

Proof. An application of Chebyshev’s inequality will provide the result. This follows from the fact

that â∗2 is unbiased for a∗2 and by Lemma B.4, the variance will go to zero as (n, p)→∞.
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Appendix C Selected Source Code

C.1 Ravi Varadhan Random Positive Definite Matrix

# Generating a random positive-definite matrix with user-specified eigenvalues

# If eigenvalues are not specified, they are generated from a uniform dist.

Posdef <- function (n, ev = runif(n, 0, 10)) {

Z <- matrix(ncol=n, rnorm(n^2))

decomp <- qr(Z)

Q <- qr.Q(decomp)

R <- qr.R(decomp)

d <- diag(R)

ph <- d / abs(d)

O <- Q %*% diag(ph)

Z <- t(O) %*% diag(ev) %*% O

return(Z)

}

C.2 Shrinkage to Diagonal Algorithm

# Given a (n+1)xp matrix of observation, we find the optimal shrinkage

# estimator for the covariance matrix of the form:

# S* = lambda*D + (1-lambda)*S

# where lambda is the optimal shrinkage intensity and D is the matrix

# consisting of the diagonal elements of S

cov.Diag.Shrink <- function(X) {

N <- dim(X)[1];

p <- dim(X)[2];

n <- N - 1;

S <- cov(X);

S.2 <- S%*%S;

D <- diag(S);

D.2 <- D*D;
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a1.hat <- mean(diag(S));

a2.hat <- (n^2/(n-1)/(n+2))*(sum(diag(S.2)) - sum(diag(S))^2/n)/p;

psi2.hat <- n/(n+2)*mean(D.2);

alpha <- (a2.hat + p*a1.hat^2)/n;

delta <- (n+1)/n*a2.hat + p/n*a1.hat^2 - (n+2)/n*psi2.hat;

Gamma <- -2/n*psi2.hat;

Rho <- (alpha + Gamma)/delta;

Rho*diag(D) + (1-Rho)*S;

}

C.3 Timing Study Code

# Here we calculate the respective shrinkage estimators.

# We note that the sames from the MVNormal will be the

# same since the seeds for the RNG are reset.

runDiagShrink <- function(n, Sigma) {

p <- dim(Sigma)[1];

X <- rmvnorm(n+1, rep(0, p), Sigma);

S.new <- cov.Diag.Shrink(X);

0; #Doesn’t matter what we return, we are interested in time.

}

runSchaefShrink <- function(n, Sigma) {

p <- dim(Sigma)[1];

X <- rmvnorm(n+1, rep(0, p), Sigma);

S.schaef <- cov.shrink(X, lambda.var=0, verbose=FALSE);

0;

}

wrapperRuns <- function(n, p, m, seed) {

# We find a random Positive Definite Matrix Sigma

ev <- runif(p, 0.5, 10.5);

Sigma <- Posdef(p, ev);

# Set the seed to control the samples, calculate the
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# time necessary for our estimator.

if(!(seed==Inf)) set.seed(seed,kind=NULL);

N <- rep(n,m);

ptm <- proc.time();

res1 <- sapply(N, runDiagShrink, Sigma=Sigma);

time.new <- (proc.time()-ptm)[3];

# Reset the seed, calculate the time for Schaefer

# and Strimmers estimator.

if(!(seed==Inf)) set.seed(seed,kind=NULL);

ptm <- proc.time();

res1 <- sapply(N, runSchaefShrink, Sigma=Sigma);

time.sch <- (proc.time()-ptm)[3];

# Return the two run-times for m-runs

c(time.new, time.sch);

}

timingDriverN <- function(p=20, m=1000, seed=Inf) {

if(!(seed==Inf)) set.seed(seed,kind=NULL);

x.axis<-c(10, 30, 50, 100, 150, 200, 300);

y.axis<-sapply(x.axis, wrapperRuns, p=p, m=m, seed=seed);

x.limit <- max(x.axis)+25;

y.limit <- ceiling(max(y.axis)+2);

plot(x.axis, y.axis[1,], type=’p’, pch=22, bg="red", col="red",

xlim=c(0,x.limit), ylim=c(0,y.limit), xlab="Sample Size n+1",

ylab="Time (s)", main="Timing Study for Sample Size" );

lines(x.axis, y.axis[1,], lty="solid", col="red");

points(x.axis, y.axis[2,], pch=23, bg="blue", col="blue");

lines(x.axis, y.axis[2,], lty="dashed", col="blue");

legend(5, (y.limit), legend = c("New Estimator", "Schaefer Estimator"),

col = c("red", "blue"), pch=c(22, 23),

pt.cex=1, pt.bg=c("red","blue"), lty = c(1, 2))

}
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