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Motivating Example
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Mean monthly high temperatures
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Stationary series (standardized within month)

Standardize by monthly means and standard deviations
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Estimation of the ACVF

Definition (Sample Autocovariance Function)

We compare the sample autocovariance function of a stationary
time series is given by the

γ̂X (k) =
1

n

n∑
t=k+1

(Xt − X̄ )(Xt−k − X̄ )

for k = 0, 1, 2, . . . n − 1

This estimator has very nice asymptotic properties that will be
useful later
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The Sample ACVF of the NY and CLE series

How do we test for a difference?
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Caveats

We present the results today in a Univariate framework but all the
results presented herein can be extended to the Multivariate
setting with relative ease (careful bookkeeping).
https://tjfisher19.github.io/research.html We also study related

problems which we will recap later.

Details can be found in Cirkovic and Fisher [2021]
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Compare the autocovariance functions

Lund et al. [2009] developed a test for equality of autocovariance
functions up to a pre-specified lag L for two stationary,
independent time series and showed (through simulation) that it
performed better than existing frequency domain tests.

The test is given by

H0 :


γX (0)
γX (1)

...
γX (L)

 =


γY (0)
γY (1)

...
γY (L)

 HA :


γX (0)
γX (1)

...
γX (L)

 6=

γY (0)
γY (1)

...
γY (L)


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Construction of the Lund et al. [2009] test

The test is based on Bartlett’s result

Theorem (Bartlett’s Result)

If Xt is the zero mean stationary process

Xt =
∞∑

k=−∞
ψkZt−k Zt ∼ IID(0, σ2)

where
∞∑

k=−∞
|ψk | <∞ and E [Z 4

t ] <∞ then given some fixed L

√
n



γ̂X (0)
γ̂X (1)

...
γ̂X (L)

−

γX (0)
γX (1)

...
γX (L)


 d−→ MVN (0,W)
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Construction of the Lund et al. [2009] test

Theorem (Bartlett’s Formula)

If Zt is Gaussian, we can compute the entries of W by

Wi ,j =
∞∑

k=−∞
γ(k)γ(k − i + j) + γ(k + j)γ(k − i)

Brockwell et al. [1991]
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Construction of the Lund et al. [2009] test

Then, under the null hypothesis of equality of autocovariances

√
n∆̂ =

√
n


γ̂X (0)− γ̂Y (0)
γ̂X (1)− γ̂Y (1)

...
γ̂X (L)− γ̂Y (L)

 d−→ MVN (0, 2W)

Hence, under the null

UL =
n

2
∆̂‘W−1∆̂

d−→ χ2
L+1

as n→∞.
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Construction of the Lund et al. [2009] test

This gives rise to a hypothesis test of equality of covariances that
rejects the null hypothesis when

ÛL =
n

2
∆̂‘Ŵ−1∆̂

exceeds the (1− α)100th quantile of a χ2
L+1 distribution.

W is estimated by employing the null hypothesis estimate
γ̂(k) = 1

2 (γ̂X (k) + γ̂Y (k)) and truncating the covariance estimate

Ŵi ,j =

bn1/3c∑
k=−bn1/3c

γ̂(k)γ̂(k − i + j) + γ̂(k + j)γ̂(k − i)

Where the truncation rule follows the conditions of Theorem A.1 in
Berkes et al.
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Application of the Test to the NYC, CLE data

Test L Statistic df p

UL 5 6.340 6 0.386

Table: Test of Lund et al. [2009] for Equality of Autocovariances up to
Lag L

This suggest the autocovariance functions are equivalent

This does not match our expectations (different climate zones)

Are we violating assumptions?
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The Cities
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The Cross-Covariance Function

Definition (Cross-Covariance Function)

Let Xt and Yt be (weakly) stationary time series. The
cross-covariance function (CCVF) of Xt and Yt at lag k is given
by

γXY (k) = Cov(Xt ,Yt−k)

for k ∈ Z

Measures the linear dependence between Xt and Yt at each
lag k .

Estimated using

γ̂XY (k) =
1

n

n∑
t=k+1

(Xt − X̄ )(Yt−k − Ȳ )
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CCF of the CLE and NYC maximum temperature series

How do we incorporate this information in the hypothesis test?
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A Test for Two (Linearly) Dependent Series

Let Xt and Yt be two univariate, zero mean stationary time series.
We allow these series to be linearly dependent.

Define a new series Zt = (Xt ,Yt)
′.

Denote the autocovariance function of Zt as

ΓZ(k) = E [ZtZ
′
t−k ] =

[
γZ1Z1(k) γZ1Z2(k)
γZ2Z1(k) γZ2Z2(k)

]
=

[
γXX (k) γXY (k)
γYX (k) γYY (k)

]
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Note that the Lund et al. [2009] test imposes independence of the
two series, giving

ΓZ(k) =

[
γXX (k) 0

0 γYY (k)

]
Define

Λ̂k = vec ΓZ(k) =


γ̂XX (k)
γ̂YX (k)
γ̂XY (k)
γ̂YY (k)


for 0 ≤ k ≤ L.

For Λ̂0, omit the γ̂XY (0) to avoid later covariance matrix
singularity.



Motivating Dataset Lit Review Proposed Simulations Results References

Then, construct the 4L + 3 dimensional vector Λ̂ by stacking the
Λ̂k for k ∈ {0, 1, . . . , L} in ascending order of k .

Ex: If I were interested in L = 1

Λ̂0 =

γ̂XX (0)
γ̂YX (0)
γ̂YY (0)

 , Λ̂1 =


γ̂XX (1)
γ̂YX (1)
γ̂XY (1)
γ̂YY (1)

 , Λ̂ =



γ̂XX (0)
γ̂YX (0)
γ̂YY (0)
γ̂XX (1)
γ̂YX (1)
γ̂XY (1)
γ̂YY (1)


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Asymptotic Properties

Note that by Bartlett’s Result, just as in the Lund et al. [2009] test

√
n
(

Λ̂− Λ
)

d−→ MVN (0,W)

where the entries of W are again computed using a multivariate
analog of Bartlett’s formula

lim
n→∞

nCov(γ̂ab(p), γ̂cd(q)) =

∞∑
r=−∞

γac(r)γb,d(r − p + q) + γad(r + q)γb,c(r − p)
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Construct a contrast matrix A such that

∆̂ = A′Λ̂ =


γ̂XX (0)− γ̂YY (0)
γ̂XX (1)− γ̂YY (1)

...
γ̂XX (L)− γ̂YY (L)


Ex: If I were interested in L = 1

A′ =

[
1 0 −1 0 0 0 0
0 0 0 1 0 0 −1

]

∆̂ =

[
1 0 −1 0 0 0 0
0 0 0 1 0 0 −1

]


γ̂XX (0)
γ̂YX (0)
γ̂YY (0)
γ̂XX (1)
γ̂YX (1)
γ̂XY (1)
γ̂YY (1)


=

[
γ̂XX (0)− γ̂YY (0)
γ̂XX (1)− γ̂YY (1)

]
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Asymptotics

We have that
√
n
(

Λ̂− Λ
)

d−→ MVN(0,W) as n→∞.

Usual multivariate results then give
√
n∆̂ =

√
nA′Λ̂

d−→ MVN(0,A′WA) under the null hypothesis.

Thus

U∗L = n∆̂′(A′WA)−1∆̂
d−→ χ2

L+1

under the null hypothesis of equality of autocovariances.
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The Dependent Test

The previous findings give rise to a hypothesis test of equality of
autocovariances that rejects the null hypothesis when
U∗L = n∆̂′(A′ŴA)−1∆̂ exceeds the α-th quantile of a χ2

L+1

distribution.

As before, Ŵ is estimated using

Cov(γ̂ab(p), γ̂cd(q)) ≈

1

n

bn1/3c∑
r=−bn1/3c

γ̂ac(r)γ̂bd(r − p + q) + γ̂ad(r + q)γ̂bc(r − p)

where the γ̂XiXj
(k) and γ̂YiYj

(k) terms inside the sum are replaced

with the null hypothesis estimate γ̂ij(k) = 1
2

[
γ̂XiXj

(k) + γ̂YiYj
(k)
]
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Why Does This Work?

Ex: If interested testing at L = 1

The asymptotic covariance matrix of ∆̂ =

[
γ̂XX (0)− γ̂YY (0)
γ̂XX (1)− γ̂YY (1)

]
is

given by Var(γXX (0))+Var(γYY (0))
−2Cov(γXX (0),γYY (0))

Cov(γXX (0),γXX (1))−Cov(γYY (0),γXX (1))
−Cov(γXX (0),γYY (1))+Cov(γYY (0),γYY (1))

Cov(γXX (0),γXX (1))−Cov(γYY (0),γXX (1))
−Cov(γXX (0),γYY (1))+Cov(γYY (0),γYY (1))

Var(γXX (1))+Var(γYY (1))
−2Cov(γXX (1),γYY (1))


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Why Does This Work?

Note that the upper left term of the asymptotic covariance matrix
contains Cov(γXX (0), γYY (0)) which can be estimated by

Cov(γ̂XX (0), γ̂YY (0)) ≈ 1

n

bn1/3c∑
r=−bn1/3c

2γ̂2
XY (r)

So the covariance matrix contains information on the dependence
structure between the two series!
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The Independent vs Dependent Test Covariance Matrix

Ex: If interested testing at L = 1
When independent: Var(γXX (0))+Var(γYY (0)) Cov(γXX (0),γXX (1))+Cov(γYY (0),γYY (1))

Cov(γXX (0),γXX (1))+Cov(γYY (0),γYY (1)) Var(γXX (1))+Var(γYY (1))


but when dependent: Var(γXX (0))+Var(γYY (0))

−2Cov(γXX (0),γYY (0))
Cov(γXX (0),γXX (1))−Cov(γYY (0),γXX (1))
−Cov(γXX (0),γYY (1))+Cov(γYY (0),γYY (1))

Cov(γXX (0),γXX (1))−Cov(γYY (0),γXX (1))
−Cov(γXX (0),γYY (1))+Cov(γYY (0),γYY (1))

Var(γXX (1))+Var(γYY (1))
−2Cov(γXX (1),γYY (1))


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Simulations

In the following simulations, we employ 1000 realizations of data
generated from a VAR(1) process with parameters

Φ =

[
φX ρφ
ρφ φY

]
and Σ =

[
1 ρΣ

ρΣ 1

]
.

Zt = ΦZt−1 + Et Et
iid∼ MVN(0,Σ)

where Xt and Yt are taken as the first and second components of
Zt , respectively.
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Size Studies

First, we take the two series as AR(1) processes of length
n = 1024, with varying levels of dependence. Here φX = φY = 0.5.

Independent Lag 0 Lag 1
L 5 10 5 10 5 10
UL 4.8 4.7 4.2 4.3 2.8 2.6
U∗L 5.2 4.7 5.8 5.5 5.1 5.0

Any cross-correlation is given by ρΣ = 0.2 or ρφ = 0.2.
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Size Studies

We again consider two AR(1) processes of length n = 1024. Here
ρφ = 0.2 and φX = φY = φ across varying φ.

φ
-0.5 -0.25 0 0.25 0.5

n = 512
L 5 5 5 5 5
UL 2.0 2.7 2.3 2.3 2.2
U∗L 4.3 4.2 4.8 5.0 4.9

n = 1024
L 5 10 5 10 5 10 5 10 5 10
UL 2.6 2.1 2.5 2.4 2.7 2.4 2.6 2.2 2.1 1.9
U∗L 5.1 4.8 5.6 4.5 5.4 4.3 5.3 4.5 5.1 4.6
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Power Study

In the following power study Xt and Yt are AR(1) processes with
φX = 0.25 and φY is allowed to vary. Here ρφ = 0.2 determines
the level of dependence.
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Power Study
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The Tests Run on the CLE and NYC Series

Test L Statistic df p

Lund, et al - UL 5 6.340 6 0.386
Proposed - U∗L 5 15.312 6 0.018

Table: Tests for Equality of Autocovariances up to Lag 5
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Additional Considerations

The same test has been developed for multivariate time series!

Tests H0 : γXiXj
(l) = γYiYj

(l) vs HA : γXiXj
(l) 6= γYiYj

(l) for
1 ≤ i , j ≤ m and 1 ≤ l ≤ L

Theoretical results largely follow that presented today but
with lots of careful bookkeeping!

Studied weighted variants of the test

Different lags receive different emphasis

Can help when series are close to non-stationary

Similar to the ideas of Fisher and Gallagher [2012] or Hong
[1996]



Motivating Dataset Lit Review Proposed Simulations Results References

Additional Considerations

An order selection test for two dependent series is also proposed

Ŝ∗L = max
0≤l≤L

{Û∗l − 2(l + 1)} (1)

Similar to results in Jin et al. [2019]

The “−2(l + 1)” acts a bit like the penalty term in AIC, a
multivariate version exists too.

The distribution of Ŝ∗L follows a Chi-Square process but can
be well approximated through bootstrapping

The bootstrapping approach provides some level of robustness
to the proposed methods for non-Gaussian data.
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R Package

All of these methods are available in the R package
autocovarianceTesting.

Currently available on Github:
https://github.com/cirkovd/autocovarianceTesting/

Working its way to CRAN (hopefully soon).

https://github.com/cirkovd/autocovarianceTesting/
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Questions?

Email Dan at cirkovd@tamu.edu or
email Tom at fishert4@miamioh.edu

Slides available at https://tjfisher19.github.io/

https://tjfisher19.github.io/
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