On Testing for the Equality of Autocovariance Between Time Series

Daniel Cirkovic¹, Thomas J. Fisher

Department of Statistics Miami University

08/12/2021

¹Currently a Ph.D. student at Texas A&M

 Motivating Dataset
 Lit Review
 Proposed
 Simulations
 Results
 References

 Motivating Example
 Motivating Example
 Notivating
 Notivating

IECC Climatic Zones in the United States

US Dep of Energy: International Energy Conservation Code

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ○ ○ ○ ○ ○ ○

Standardize by monthly means and standard deviations

Definition (Sample Autocovariance Function)

We compare the **sample autocovariance function** of a stationary time series is given by the

$$\hat{\gamma}_X(k) = \frac{1}{n} \sum_{t=k+1}^n (X_t - \bar{X}) (X_{t-k} - \bar{X})$$

for $k = 0, 1, 2, \dots n - 1$

 This estimator has very nice asymptotic properties that will be useful later

• How do we test for a difference?

・ロト (四) (ボン・(ボン・(ロ))

	Lit Review •000000		
Caveats			

We present the results today in a **Univariate** framework but all the results presented herein can be extended to the **Multivariate** setting with relative ease (careful bookkeeping). https://tjfisher19.github.io/research.html We also study related

problems which we will recap later.

Details can be found in Cirkovic and Fisher [2021]

Lund et al. [2009] developed a test for equality of autocovariance functions up to a pre-specified lag L for two stationary, independent time series and showed (through simulation) that it performed better than existing frequency domain tests.

The test is given by

$$H_{0}:\begin{bmatrix}\gamma_{X}(0)\\\gamma_{X}(1)\\\vdots\\\gamma_{X}(L)\end{bmatrix} = \begin{bmatrix}\gamma_{Y}(0)\\\gamma_{Y}(1)\\\vdots\\\gamma_{Y}(L)\end{bmatrix} \quad H_{A}:\begin{bmatrix}\gamma_{X}(0)\\\gamma_{X}(1)\\\vdots\\\gamma_{X}(L)\end{bmatrix} \neq \begin{bmatrix}\gamma_{Y}(0)\\\gamma_{Y}(1)\\\vdots\\\gamma_{Y}(L)\end{bmatrix}$$

 Motivating Dataset
 Lit Review
 Proposed
 Simulations
 Results
 References

 Construction of the Lund et al.
 [2009]
 test

Theorem (Bartlett's Formula)

If Z_t is Gaussian, we can compute the entries of W by

$$W_{i,j} = \sum_{k=-\infty}^{\infty} \gamma(k)\gamma(k-i+j) + \gamma(k+j)\gamma(k-i)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Brockwell et al. [1991]

Then, under the null hypothesis of equality of autocovariances

$$\sqrt{n}\hat{\Delta} = \sqrt{n} \begin{bmatrix} \hat{\gamma}_{X}(0) - \hat{\gamma}_{Y}(0) \\ \hat{\gamma}_{X}(1) - \hat{\gamma}_{Y}(1) \\ \vdots \\ \hat{\gamma}_{X}(L) - \hat{\gamma}_{Y}(L) \end{bmatrix} \xrightarrow{d} MVN(0, 2W)$$

Hence, under the null

$$U_L = \frac{n}{2} \hat{\Delta} \,^{\prime} \mathsf{W}^{-1} \hat{\Delta} \stackrel{d}{\to} \chi^2_{L+1}$$

as $n \to \infty$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

 Motivating Dataset
 Lit Review
 Proposed
 Simulations
 Results
 References

 Construction of the Lund et al. [2009] test
 Construction
 Construction<

This gives rise to a hypothesis test of equality of covariances that rejects the null hypothesis when

$$\hat{U}_L = \frac{n}{2} \hat{\Delta}' \hat{W}^{-1} \hat{\Delta}$$

exceeds the (1 – α)100th quantile of a χ^2_{L+1} distribution.

W is estimated by employing the null hypothesis estimate $\hat{\gamma}(k) = \frac{1}{2}(\hat{\gamma}_X(k) + \hat{\gamma}_Y(k))$ and truncating the covariance estimate

$$\hat{W}_{i,j} = \sum_{k=-\lfloor n^{1/3} \rfloor}^{\lfloor n^{1/3} \rfloor} \hat{\gamma}(k) \hat{\gamma}(k-i+j) + \hat{\gamma}(k+j) \hat{\gamma}(k-i)$$

Where the truncation rule follows the conditions of Theorem A.1 in Berkes et al.

- コント 4 日 > ト 4 日 > ト 4 日 > - シックマ

Test	L	Statistic	df	р	
U_L	5	6.340	6	0.386	

Table: Test of Lund et al. [2009] for Equality of Autocovariances up to Lag ${\it L}$

- This suggest the autocovariance functions are equivalent
- This does not match our expectations (different climate zones)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Are we violating assumptions?

The Cities			

IECC Climatic Zones in the United States

US Dep of Energy: International Energy Conservation Code

The Cross-Covariance Function

Definition (Cross-Covariance Function)

Let X_t and Y_t be (weakly) stationary time series. The cross-covariance function (CCVF) of X_t and Y_t at lag k is given by $\gamma_{XY}(k) = \text{Cov}(X_t, Y_{t-k})$ for $k \in \mathbb{Z}$

• Measures the linear dependence between X_t and Y_t at each lag k.

Estimated using

$$\hat{\gamma}_{XY}(k) = \frac{1}{n} \sum_{t=k+1}^{n} (X_t - \bar{X})(Y_{t-k} - \bar{Y})$$

・ロト (四) (ボン・(ボン・(ロ))

How do we incorporate this information in the hypothesis test?

Let X_t and Y_t be two univariate, zero mean stationary time series. We allow these series to be linearly dependent.

Define a new series $Z_t = (X_t, Y_t)'$.

Denote the autocovariance function of Z_t as

$$\Gamma_{\mathsf{Z}}(k) = \mathsf{E}[\mathsf{Z}_{t}\mathsf{Z}'_{t-k}] = \begin{bmatrix} \gamma_{\mathsf{Z}_{1}\mathsf{Z}_{1}}(k) & \gamma_{\mathsf{Z}_{1}}\mathsf{Z}_{2}(k) \\ \gamma_{\mathsf{Z}_{2}}\mathsf{Z}_{1}(k) & \gamma_{\mathsf{Z}_{2}}\mathsf{Z}_{2}(k) \end{bmatrix} = \begin{bmatrix} \gamma_{\mathsf{X}\mathsf{X}}(k) & \gamma_{\mathsf{X}\mathsf{Y}}(k) \\ \gamma_{\mathsf{Y}\mathsf{X}}(k) & \gamma_{\mathsf{Y}\mathsf{Y}}(k) \end{bmatrix}$$

- コント 4 日 > ト 4 日 > ト 4 日 > - シックマ

Note that the Lund et al. [2009] test imposes independence of the two series, giving

$$\Gamma_{\mathsf{Z}}(k) = \begin{bmatrix} \gamma_{XX}(k) & 0 \\ 0 & \gamma_{YY}(k) \end{bmatrix}$$

Define

$$\hat{\Lambda}_{k} = \operatorname{vec} \, \Gamma_{\mathsf{Z}}(k) = \begin{bmatrix} \hat{\gamma}_{XX}(k) \\ \hat{\gamma}_{YX}(k) \\ \hat{\gamma}_{XY}(k) \\ \hat{\gamma}_{YY}(k) \end{bmatrix}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

for $0 \leq k \leq L$.

For $\hat{\Lambda}_0$, omit the $\hat{\gamma}_{XY}(0)$ to avoid later covariance matrix singularity.

Then, construct the 4L + 3 dimensional vector $\hat{\Lambda}$ by stacking the $\hat{\Lambda}_k$ for $k \in \{0, 1, \dots, L\}$ in ascending order of k.

Ex: If I were interested in L = 1

$$\hat{\Lambda}_{0} = \begin{bmatrix} \hat{\gamma}_{XX}(0) \\ \hat{\gamma}_{YX}(0) \\ \hat{\gamma}_{YY}(0) \end{bmatrix}, \quad \hat{\Lambda}_{1} = \begin{bmatrix} \hat{\gamma}_{XX}(1) \\ \hat{\gamma}_{YX}(1) \\ \hat{\gamma}_{XY}(1) \\ \hat{\gamma}_{YY}(1) \end{bmatrix}, \quad \hat{\Lambda} = \begin{bmatrix} \hat{\gamma}_{XX}(0) \\ \hat{\gamma}_{YX}(0) \\ \hat{\gamma}_{YX}(0) \\ \hat{\gamma}_{XX}(1) \\ \hat{\gamma}_{YX}(1) \\ \hat{\gamma}_{YY}(1) \\ \hat{\gamma}_{YY}(1) \end{bmatrix}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Note that by Bartlett's Result, just as in the Lund et al. [2009] test

$$\sqrt{n}\left(\hat{\Lambda}-\Lambda\right) \xrightarrow{d} MVN\left(0,W\right)$$

where the entries of W are again computed using a multivariate analog of Bartlett's formula

$$\lim_{n \to \infty} n \operatorname{Cov}(\hat{\gamma}_{ab}(p), \hat{\gamma}_{cd}(q)) = \sum_{r=-\infty}^{\infty} \gamma_{ac}(r) \gamma_{b,d}(r-p+q) + \gamma_{ad}(r+q) \gamma_{b,c}(r-p)$$

Construct a contrast matrix A such that

$$\hat{\Delta} = \mathsf{A}'\hat{\Lambda} = \begin{bmatrix} \hat{\gamma}_{XX}(0) - \hat{\gamma}_{YY}(0) \\ \hat{\gamma}_{XX}(1) - \hat{\gamma}_{YY}(1) \\ \vdots \\ \hat{\gamma}_{XX}(L) - \hat{\gamma}_{YY}(L) \end{bmatrix}$$

Ex: If I were interested in L = 1

$$\mathsf{A}' = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}$$

$$\hat{\Delta} = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \hat{\gamma}_{XX}(0) \\ \hat{\gamma}_{YY}(0) \\ \hat{\gamma}_{YY}(0) \\ \hat{\gamma}_{XX}(1) \\ \hat{\gamma}_{YX}(1) \\ \hat{\gamma}_{YY}(1) \\ \hat{\gamma}_{YY}(1) \end{bmatrix} = \begin{bmatrix} \hat{\gamma}_{XX}(0) - \hat{\gamma}_{YY}(0) \\ \hat{\gamma}_{XX}(1) - \hat{\gamma}_{YY}(0) \\ \hat{\gamma}_{YY}(1) \end{bmatrix}$$

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

		Proposed ooooooooooooooo		
Asymptotics				

We have that
$$\sqrt{n}\left(\hat{\Lambda}-\Lambda\right) \xrightarrow{d} MVN(0,W)$$
 as $n \to \infty$.

Usual multivariate results then give $\sqrt{n}\hat{\Delta} = \sqrt{n}A'\hat{\Lambda} \xrightarrow{d} MVN(0, A'WA)$ under the null hypothesis.

Thus

$$U_L^* = n\hat{\Delta}'(\mathsf{A}'\mathsf{W}\mathsf{A})^{-1}\hat{\Delta} \xrightarrow{d} \chi^2_{L+1}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

under the null hypothesis of equality of autocovariances.

Motivating Dataset Lit Review Proposed Simulations Results References cocccocc cocccoccc cocccccc coccccc coccccc coccccc

The previous findings give rise to a hypothesis test of equality of autocovariances that rejects the null hypothesis when $U_L^* = n \hat{\Delta}' (A' \hat{W} A)^{-1} \hat{\Delta}$ exceeds the α -th quantile of a χ^2_{L+1} distribution.

As before, \hat{W} is estimated using

$$\operatorname{Cov}(\hat{\gamma}_{ab}(p), \hat{\gamma}_{cd}(q)) \approx \frac{1}{n} \sum_{r=-\lfloor n^{1/3} \rfloor}^{\lfloor n^{1/3} \rfloor} \hat{\gamma}_{ac}(r) \hat{\gamma}_{bd}(r-p+q) + \hat{\gamma}_{ad}(r+q) \hat{\gamma}_{bc}(r-p)$$

where the $\hat{\gamma}_{X_iX_j}(k)$ and $\hat{\gamma}_{Y_iY_j}(k)$ terms inside the sum are replaced with the null hypothesis estimate $\hat{\gamma}_{ij}(k) = \frac{1}{2} \left[\hat{\gamma}_{X_iX_j}(k) + \hat{\gamma}_{Y_iY_j}(k) \right]$

Ex: If interested testing at L = 1The asymptotic covariance matrix of $\hat{\Delta} = \begin{bmatrix} \hat{\gamma}_{XX}(0) - \hat{\gamma}_{YY}(0) \\ \hat{\gamma}_{XX}(1) - \hat{\gamma}_{YY}(1) \end{bmatrix}$ is given by

 $\begin{bmatrix} Var(\gamma_{XX}(0))+Var(\gamma_{YY}(0)) & Cov(\gamma_{XX}(0),\gamma_{XX}(1))-Cov(\gamma_{YY}(0),\gamma_{XX}(1)) \\ -2Cov(\gamma_{XX}(0),\gamma_{YY}(0)) & -Cov(\gamma_{XX}(0),\gamma_{YY}(1))+Cov(\gamma_{YY}(0),\gamma_{YY}(1)) \end{bmatrix}$ $\begin{bmatrix} Cov(\gamma_{XX}(0),\gamma_{XX}(1))-Cov(\gamma_{YY}(0),\gamma_{XX}(1)) & Var(\gamma_{XX}(1))+Cov(\gamma_{YY}(0),\gamma_{YY}(1)) \\ -Cov(\gamma_{XX}(0),\gamma_{YY}(1))+Cov(\gamma_{YY}(0),\gamma_{YY}(1)) & -2Cov(\gamma_{XX}(1),\gamma_{YY}(1)) \end{bmatrix}$

▲ロト ▲ 国 ト ▲ 国 ト ▲ 国 ト 一 国 - の へ ()

Note that the upper left term of the asymptotic covariance matrix contains $Cov(\gamma_{XX}(0), \gamma_{YY}(0))$ which can be estimated by

$$\operatorname{Cov}(\hat{\gamma}_{XX}(0),\hat{\gamma}_{YY}(0)) \approx \frac{1}{n} \sum_{r=-\lfloor n^{1/3} \rfloor}^{\lfloor n^{1/3} \rfloor} 2\hat{\gamma}_{XY}^2(r)$$

So the covariance matrix contains information on the dependence structure between the two series!

- コント 4 日 > ト 4 日 > ト 4 日 > - シックマ

Ex: If interested testing at L = 1When independent:

 $\begin{aligned} & \mathsf{Var}(\gamma_{XX}(0)) + \mathsf{Var}(\gamma_{YY}(0)) \\ & \mathsf{Cov}(\gamma_{XX}(0), \gamma_{XX}(1)) + \mathsf{Cov}(\gamma_{YY}(0), \gamma_{YY}(1)) \end{aligned}$

but when dependent:

 $Var(\gamma_{XX}(0))+Var(\gamma_{YY}(0))$ $-2Cov(\gamma_{XX}(0),\gamma_{YY}(0))$ $Cov(\gamma_{XX}(0),\gamma_{XX}(1))-Cov(\gamma_{YY}(0),\gamma_{XX}(1))$ $-Cov(\gamma_{XX}(0),\gamma_{YY}(1))+Cov(\gamma_{YY}(0),\gamma_{YY}(1))$

 $\left. \begin{array}{c} \mathsf{Cov}(\gamma_{XX}(0), \gamma_{XX}(1)) + \mathsf{Cov}(\gamma_{YY}(0), \gamma_{YY}(1)) \\ \\ \mathsf{Var}(\gamma_{XX}(1)) + \mathsf{Var}(\gamma_{YY}(1)) \end{array} \right|$

 $\begin{array}{c} \mathsf{Cov}(\gamma_{XX}(0), \gamma_{XX}(1)) - \mathsf{Cov}(\gamma_{YY}(0), \gamma_{XX}(1)) \\ - \mathsf{Cov}(\gamma_{XX}(0), \gamma_{YY}(1)) + \mathsf{Cov}(\gamma_{YY}(0), \gamma_{YY}(1)) \end{array} \right]$ $Var(\gamma_{XX}(1))+Var(\gamma_{YY}(1))$ $-2Cov(\gamma_{XX}(1),\gamma_{YY}(1))$

		Simulations ●0000		
Simulations				

In the following simulations, we employ 1000 realizations of data generated from a VAR(1) process with parameters

$$\Phi = \begin{bmatrix} \phi_X & \rho_{\phi} \\ \rho_{\phi} & \phi_Y \end{bmatrix} \text{ and } \Sigma = \begin{bmatrix} 1 & \rho_{\Sigma} \\ \rho_{\Sigma} & 1 \end{bmatrix}.$$
$$Z_t = \Phi Z_{t-1} + E_t \quad E_t \stackrel{iid}{\sim} MVN(0, \Sigma)$$

where X_t and Y_t are taken as the first and second components of Z_t , respectively.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

		Simulations 00000	
Size Studies			

First, we take the two series as AR(1) processes of length n = 1024, with varying levels of dependence. Here $\phi_X = \phi_Y = 0.5$.

	Independent		Lag O			Lag 1		
L	5	10	5	10		5	10	
U_L	4.8	4.7	4.2	4.3		2.8	2.6	
U_I^*	5.2	4.7	5.8	5.5		5.1	5.0	

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ・ うへつ

Any cross-correlation is given by $\rho_{\Sigma} = 0.2$ or $\rho_{\phi} = 0.2$.

Motivating Dataset	Lit Review 0000000	Proposed 000000000000	Simulations 00000	Results 00000		
Size Studies						

We again consider two AR(1) processes of length n = 1024. Here $\rho_{\phi} = 0.2$ and $\phi_X = \phi_Y = \phi$ across varying ϕ .

						¢	6						
	-0.	.5	-0.	-0.25		0			0.25			0.5	
	<u>n = 512</u>												
L	5	5	í	5		5	5		5			5	
U_L	2.	0	2	2.7		2.3			2.3			2.2	
U_L^*	4.	3	4	.2		4.8			5	.0		4	.9
						n = 1	1024						
L	5	10	5	10		5	10		5	10		5	10
U_L	2.6	2.1	2.5	2.4		2.7	2.4	_	2.6	2.2	• •	2.1	1.9
U_L^*	5.1	4.8	5.6	4.5		5.4	4.3		5.3	4.5		5.1	4.6

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

		Simulations 000●0	
Power Study			

In the following power study X_t and Y_t are AR(1) processes with $\phi_X = 0.25$ and ϕ_Y is allowed to vary. Here $\rho_{\phi} = 0.2$ determines the level of dependence.

	Simulations	

Power Study

≣ 990

Motivating Dataset Lit Review Proposed Simulations Results Cococo The Tests Run on the CLE and NYC Series

Test	L	Statistic	df	р
Lund, et al - U_L	5	6.340	6	0.386
Proposed - U_L^*	5	15.312	6	0.018

Table: Tests for Equality of Autocovariances up to Lag 5

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ○ ○ ○ ○ ○ ○

Motivating Dataset Lit Review Proposed Simulations Results References Additional Considerations

The same test has been developed for multivariate time series!

- Tests $H_0 : \gamma_{X_iX_j}(I) = \gamma_{Y_iY_j}(I)$ vs $H_A : \gamma_{X_iX_j}(I) \neq \gamma_{Y_iY_j}(I)$ for $1 \le i, j \le m$ and $1 \le l \le L$
- Theoretical results largely follow that presented today but with lots of careful *bookkeeping*!

Studied weighted variants of the test

- Different lags receive different emphasis
- Can help when series are close to non-stationary
- Similar to the ideas of Fisher and Gallagher [2012] or Hong [1996]

An order selection test for two dependent series is also proposed

$$\hat{S}_{L}^{*} = \max_{0 \le l \le L} \{ \hat{U}_{l}^{*} - 2(l+1) \}$$
(1)

- Similar to results in Jin et al. [2019]
- The "-2(l+1)" acts a bit like the penalty term in AIC, a multivariate version exists too.
- The distribution of \hat{S}_L^* follows a Chi-Square process but can be well approximated through bootstrapping
- The bootstrapping approach provides some level of robustness to the proposed methods for non-Gaussian data.

		Results 000●0	
R Package			

All of these methods are available in the R package autocovarianceTesting.

 Currently available on Github: https://github.com/cirkovd/autocovarianceTesting/

• Working its way to CRAN (hopefully soon).

Questions?			

Email Dan at cirkovd@tamu.edu or email Tom at fishert4@miamioh.edu

Slides available at https://tjfisher19.github.io/

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

References			

- István Berkes, Lajos Horváth, Piotr Kokoszka, Qi-Man Shao, et al. On discriminating between long-range dependence and changes in mean. *The annals of statistics*, 34 (3):1140–1165, 2006.
- Peter J Brockwell, Richard A Davis, and Stephen E Fienberg. *Time Series: Theory and Methods: Theory and Methods.* Springer Science & Business Media, 1991.
- Daniel Cirkovic and Thomas J. Fisher. On testing for the equality of autocovariance in time series. *Environmetrics*, n/a(n/a):e2680, 2021. doi: https://doi.org/10.1002/env.2680.
- Thomas J Fisher and Colin M Gallagher. New weighted portmanteau statistics for time series goodness of fit testing. *Journal of the American Statistical Association*, 107(498):777–787, 2012.
- Yongmiao Hong. Consistent testing for serial correlation of unknown form. *Econometrica*, 64(4):pp. 837–864, 1996. ISSN 00129682. URL http://www.jstor.org/stable/2171847.
- Lei Jin, Li Cai, and Suojin Wang. A computational bootstrap procedure to compare two dependent time series. *Journal of Statistical Computation and Simulation*, 89 (15):2831–2847, 2019.
- Robert Lund, Hany Bassily, and Brani Vidakovic. Testing equality of stationary autocovariances. *Journal of Time Series Analysis*, 30(3):332–348, 2009.