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Shameless Self-Promotion

These results are published and available:

Lund, R., Fisher, T.J., Diawara, N. and Wehner, M. (2025), “Multiple
Changepoint Detection for Non-Gaussian Time Series.” J. Time Ser. Anal.
(https://doi.org/10.1111/jtsa.12833)

Slides and code available:

https://tjfisher19.github.io/

Github repo: tjfisher19/non-gaussian changepoints

Email: fishert4@miamioh.edu
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Some Highlights from the Paper

Changepoints using penalized likelihoods
(model selection ideas!)
• BIC - Bayesian Information Criterion

• MDL - Minimum Description Length

Builds on Autocorrelated Gaussian Processes
• Transformed to non-Gaussian process

• Works for both continuous and discrete
processes
- Hermite expansions motivate retention of

correlation structure

• Works in multivariate settings
- Multivariate Poisson is explored in the paper
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Talkin’ Baseball

Baseball has been played professionally
for over 150 years.

The game has gone through several
distinct eras.

Currently, Major League Baseball (MLB)
• Consist of 30 teams, each with a roster of 26 players

• Separated into two leagues and six divisions

• From 1871 through 2024 there have been 21,271 players
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Talkin’ Baseball

The Basics of the game

• A pitcher stands on a mound and

• Throws (or pitches) the ball towards homeplate.
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Talkin’ Baseball

The Basics of the game

• A batter attempts to hit the pitched ball with a wooden bat,

• When hit, the ball is in play and the batter runs the bases.
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Talkin’ Baseball

The Basics of the game

• The defense tries to get the batter out

• While the batter tries to successfully reach base.
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Harder than it sounds

The greatest hitters in history fail nearly 2 out of 3 times!!

Player Hits Average
Ty Cobb 4189 0.366
Rogers Hornsby 2930 0.358
Shoeless Joe Jackson 1772 0.356
Tris Speaker 3514 0.345
Ted Williams 2654 0.344

When hit over the outfield fence, known as a homerun
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Homerun

Link


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



https://youtu.be/BNZl6HN5c-0?si=FMrG_8KpeYswPtQV&t=3
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Greatest HR Hitters

Homeruns are fairly rare events

Player HR HR ‘Avg’ BA
Barry Bonds 762 0.0774 0.298
Hank Aaron 755 0.0611 0.305
Babe Ruth 714 0.0850 0.342
Albert Pujols 703 0.0616 0.296
Alex Rodriguez 696 0.0659 0.295
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Homeruns in History
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Homeruns in History
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Players in History
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Data Features

Homerun ‘averages’ in time

• Proportions!
- Small values (near 0)

• Mean proportion: 0.0234; standard deviation: 0.00742

• Trend? or regimes present

• Almost certainly autocorrelated
- On average 81.4% of players return year-to-year (SD: 3.4%).

- Median number of seasons played: 3
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Model Form (Beta distribution)

Let Xt be the homerun proportion observed in year t.

We assume Xt ∼ Beta(α, β) where the Beta p.d.f. is

fXt(x) =
xα−1(1 − x)β−1

B(α, β)
, 0 ≤ x ≤ 1,

with B(α, β) the beta function for α > 0 and β > 0. Moments are

E[Xt] =
α

α+ β
, and Var(Xt) =

αβ

(α+ β)2(α+ β + 1)
.

Can be reparametrized with a precision κ and mean µ defined as

κ = α+ β and µ =
α

κ
, respectively.

Can transform back via α = µκ and β = (1 − µ)κ.

The variability of Xt is inversely related to the precision parameter κ.
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Handling Autocorrelation

{Xt} has the marginal Beta cumulative distribution function (CDF)

Fθt(x) = P[Xt ≤ x], where θt = (µt, κt)
′.

We convert this into a Gaussian series {Zt} via

Zt = Φ−1(Fθt(Xt)). (1)

where Φ−1 is the inverse of the standard normal CDF:

Φ(z) =
∫ z

−∞

e−t2/2
√

2π
dt

In this sense, Xt can be considered a function of Zt

Xt = F−1
θt

(Φ(Zt)), (2)

The probability transformation theorem justifies the relationship.
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Structure of {Zt}

The series {Zt} can be autocorrelated, let

ρZ(h) = Corr(Zt,Zt+h).

Assume Zt is from the class of ARMA models

Zt − φ1Zt−1 − · · · − φpZt−p = ϵt + β1ϵt−1 + · · ·+ βqϵt−q.

Error process {ϵt} is N(0, σ2
ϵ) with σ2

ϵ chosen to make Var(Zt) ≡ 1.
σ2
ϵ depends on the ARMA parameters.

The Gaussian likelihood w.r.t. {Zt}N
t=1 is

L(θARMA|{Zt}N
t=1) = (2π)−N/2 det(ΣZ)

−1/2 exp
(

Z′Σ−1
Z Z

)
,

with variance-covariance matrix ΣZ .
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Likelihood Function for Zt

We work with autoregressions (AR) and let θAR = (φ1, . . . , φp)
′ denote all

AR model parameters. When p = 1 the likelihood can be calculated via

− 2 ln(L(φ1|{Zt}N
t=1)) =

N ln(2π) + (N − 1) ln(1 − φ2
1) + Z2

1 +

N∑
t=2

(Zt − φ1Zt−1)
2

1 − φ2
1

.
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Likelihood Function for Xt

With regard to our observed series {Xt}, we have the parameters θF = (µ, κ)
and θAR = φ. The likelihood is

L(θF,θAR|{Xt}N
t=1) = L(θAR|{Zt}N

t=1)|J|,

where

|J| =
N∏

t=1

∣∣∣∣∂Zt

∂Xt

∣∣∣∣.
and

|J| = (2π)N/2 exp

{
1
2

N∑
t=1

Φ−1(Fθt(Xt))
2

}
N∏

t=1

fθt(Xt).

Here, fθt(Xt) is the Beta probability density.
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Model Selection

We use penalized likelihood methods to find changepoints in our data.

We set κ and φ to be constant in time, but µt can vary by regime.

Bayesian Information Criterion (BIC)
• Well known criteria

• Similar to AIC but prefers simpler models

Minimum Description Length (MDL)
• Based on coding and information theory

• Better models = models with minimal storage

• Each parameter can uniquely be penalized

See Shi et al. [2022] for comparison of these approaches.
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Model Selection Details

Two fixed parameters κ and φ, while µt can vary by regime.

For m changepoints at times τi, there are m + 1 regimes.

BIC Objective Function

−2 ln(L) + log(N)(2m + 2),

MDL Objective Function

−2 ln(L) +
ln(N)

2
+

m+1∑
j=1

ln(τj − τj−1)

2
+ ln(m) +

m∑
j=1

ln(τj),

where the boundaries τ0 = 0 and τm+1 = N are enforced.
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Optimization of Penalized Likelihood

A Genetic Algorithm is used to find the optimal BIC and MDL objective
functions
• Binary search on N − 1 potential change point locations
• Max iterations 5000, a run of 500 for convergence

• Mutation probability: 0.1; Crossover probability: 0.8

• Suggestions for initial populations
• No change point configuration

• All single change point configurations

• Random selection of 2 change point configurations

• Additional regime penalty (minimum regime length 8 years)

See Lund et al. [2025] for more on genetic algorithms and MDL.
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Simulation Setup

Six changepoint configurations.

100 Gaussian AR(1) series with φ = 0.3 are generated, each is used to build
Beta series of length N = 100 with the following parameterizations (see (2)).

Changepoints τi Means µ Precision κ
1 41 (0.023, 0.030) 500
2 41 (0.023, 0.030) (400, 700)
3 41, 71 (0.023, 0.030, 0.022) 600
4 41, 71 (0.023, 0.030, 0.022) (600, 300, 600)
5 26, 51, 66, 91 (0.021, 0.027, 0.021, 0.029, 0.034) 1500
6 26, 51, 66, 91 (0.021, 0.027, 0.021, 0.029, 0.034) (500, 600, 700, 1000, 1250)
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Simulation Setup Visualized
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Checking Changepoint Accuracy

Two potential sources of misclassification arise:
• the number of changepoints detected

• the changepoint locations.

The changepoint configuration distance from Shi et al. [2022] is used, which
compares two changepoint configurations, C1 and C2, having mC1 and mC2

changepoints, respectively.

This distance is defined by

d(C1, C2) = |mC1 − mC2 |+min {A(C1, C2)} ,

See Shi et al. [2022] or Lund et al. [2025] for more details.
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Simulation Results
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Back to Baseball
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Fitted Model Comparison

Comparisons of the model fits on baseball homerun ‘averages’.

Model Changepoints τi BIC MDL φ̂1

Fits assuming iid
No change points — -718.909 -723.563 —
Trend — -861.501 -868.482 —

Fits with AR-term
No changes — -911.733 -916.387 0.939
Trend — -924.938 -931.919 0.684
BIC Selected 1930, 1948, 1994 -920.537 -938.213 0.474
MDL Selected 1929, 1948, 1956, 1968,

1983, 1995, 2017

-911.491 -945.628 0.202
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Assessing Model Adequacy

With a set of µ̂t, κ̂ and φ̂ from our fitted model, we can calculate an estimate
for the underlying Normal series via equation (1

Ẑt = Φ−1(Fθ̂t
(Xt)), where θ̂t = (µ̂t, κ̂)

If the model formulation is adequate, the {Ẑt} series should behave as a
Gaussian AR(1) process with φ̂.

We assess can visually and with goodness-of-fit testing (we use Fisher and
Gallagher [2012] and Anderson and Darling [1954] tests below).

Demonstrated on the BIC selected segmented model (four regimes).
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Latent Normal Series
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Autocorrelation in Normal Series
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Residual Series
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Autocorrelation in Residual Series
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Normality of Residual Series
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Thank You


	Introduction
	Intro

	Baseball
	Basics
	HRs
	Data

	Statistical Methods
	Model Form
	Model Selection
	Simulations

	Baseball Conclusions
	Results
	Model GOF

	References

	fd@rm@0: 
	anm2: 
	2.29: 
	2.28: 
	2.27: 
	2.26: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


