Changepoints in non-Gaussian autocorrelated time series

JSM 2025, Nashville, Tennessee

Thomas J. Fisher

Joint work with Robert Lund (UC-Santa Cruz), Norou Diawara (Old Dominion), Michael Wehner (Lawrence Berkeley National Laboratory)

Miami University, Oxford, OH

03 August 2025

Shameless Self-Promotion

These results are published and available:

Lund, R., Fisher, T.J., Diawara, N. and Wehner, M. (2025), "Multiple Changepoint Detection for Non-Gaussian Time Series." *J. Time Ser. Anal.* (https://doi.org/10.1111/jtsa.12833)

Slides and code available:

https://tjfisher19.github.io/

Github repo: tjfisher19/non-gaussian_changepoints

Email: fishert4@miamioh.edu

Some Highlights from the Paper

Changepoints using penalized likelihoods (model selection ideas!)

- BIC Bayesian Information Criterion
- MDL Minimum Description Length

Builds on Autocorrelated Gaussian Processes

- Transformed to non-Gaussian process
- Works for both continuous and discrete processes
 - Hermite expansions motivate retention of correlation structure
- Works in multivariate settings
 - Multivariate Poisson is explored in the paper

Baseball has been played professionally for over 150 years.

The game has gone through several distinct *eras*.

Currently, Major League Baseball (MLB)

- Consist of 30 teams, each with a roster of 26 players
- Separated into two leagues and six divisions
- From 1871 through 2024 there have been 21,271 players

The Basics of the game

- A pitcher stands on a mound and
- Throws (or pitches) the ball towards *homeplate*.

The Basics of the game

- A batter attempts to hit the pitched ball with a wooden bat,
- When hit, the ball is in play and the batter runs the bases.

The Basics of the game

- The defense tries to get the batter out
- While the batter tries to successfully reach base.

Harder than it sounds

The greatest hitters in history fail nearly 2 out of 3 times!!

Player	Hits	Average
Ty Cobb	4189	0.366
Rogers Hornsby	2930	0.358
Shoeless Joe Jackson	1772	0.356
Tris Speaker	3514	0.345
Ted Williams	2654	0.344

Harder than it sounds

The greatest hitters in history fail nearly 2 out of 3 times!!

Player	Hits	Average
Ty Cobb	4189	0.366
Rogers Hornsby	2930	0.358
Shoeless Joe Jackson	1772	0.356
Tris Speaker	3514	0.345
Ted Williams	2654	0.344

Homerun

Greatest HR Hitters

Homeruns are fairly rare events

Player	HR	HR 'Avg'	BA
Barry Bonds	762	0.0774	0.298
Hank Aaron	755	0.0611	0.305
Babe Ruth	714	0.0850	0.342
Albert Pujols	703	0.0616	0.296
Alex Rodriguez	696	0.0659	0.295

Homeruns in History

Homerun "Average" per Season during the 'Live Ball' era

Homeruns in History

Distribution of Homerun "Average" during 'Live Ball' era

Source: Lahman's Baseball Database, 1871-2024

Players in History

Batters returning from previous season

Data Features

Homerun 'averages' in time

- Proportions!
 - Small values (near 0)
 - Mean proportion: 0.0234; standard deviation: 0.00742
- Trend? or regimes present
- Almost certainly autocorrelated
 - On average 81.4% of players return year-to-year (SD: 3.4%).
 - Median number of seasons played: 3

Let X_t be the homerun proportion observed in year t.

We assume $X_t \sim \text{Beta}(\alpha, \beta)$ where the Beta *p.d.f.* is

$$f_{X_i}(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, \quad 0 \le x \le 1,$$

with $B(\alpha, \beta)$ the beta function for $\alpha > 0$ and $\beta > 0$. Moments are

$$E[X_t] = \frac{\alpha}{\alpha + \beta}$$
, and $Var(X_t) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.

Can be reparametrized with a precision κ and mean μ defined as

$$\kappa = \alpha + \beta$$
 and $\mu = \frac{\alpha}{\kappa}$, respectively.

Can transform back via $\alpha = \mu \kappa$ and $\beta = (1 - \mu)\kappa$.

The variability of X_t is inversely related to the precision parameter κ .

Handling Autocorrelation

 $\{X_t\}$ has the marginal Beta cumulative distribution function (CDF)

$$F_{\theta_t}(x) = P[X_t \le x], \text{ where } \theta_t = (\mu_t, \kappa_t)'.$$

We *convert* this into a Gaussian series $\{Z_t\}$ via

$$Z_t = \Phi^{-1}(F_{\boldsymbol{\theta}_t}(X_t)). \tag{1}$$

where Φ^{-1} is the inverse of the standard normal CDF:

$$\Phi(z) = \int_{-\infty}^{z} \frac{e^{-t^2/2}}{\sqrt{2\pi}} dt$$

In this sense, X_t can be considered a function of Z_t

$$X_t = F_{\boldsymbol{\theta}_t}^{-1}(\Phi(Z_t)), \tag{2}$$

The probability transformation theorem justifies the relationship.

Structure of $\{Z_t\}$

The series $\{Z_t\}$ can be autocorrelated, let

$$\rho_Z(h) = \operatorname{Corr}(Z_t, Z_{t+h}).$$

Assume Z_t is from the class of ARMA models

$$Z_t - \varphi_1 Z_{t-1} - \dots - \varphi_p Z_{t-p} = \epsilon_t + \beta_1 \epsilon_{t-1} + \dots + \beta_q \epsilon_{t-q}.$$

Error process $\{\epsilon_t\}$ is $N(0, \sigma_{\epsilon}^2)$ with σ_{ϵ}^2 chosen to make $\text{Var}(Z_t) \equiv 1$. σ_{ϵ}^2 depends on the ARMA parameters.

The Gaussian likelihood w.r.t. $\{Z_t\}_{t=1}^N$ is

$$L(\boldsymbol{\theta}_{ARMA}|\{Z_t\}_{t=1}^N) = (2\pi)^{-N/2} \det(\boldsymbol{\Sigma}_Z)^{-1/2} \exp\left(\mathbf{Z}'\boldsymbol{\Sigma}_Z^{-1}\mathbf{Z}\right),$$

with variance-covariance matrix Σ_Z .

We work with autoregressions (AR) and let $\theta_{AR} = (\varphi_1, \dots, \varphi_p)'$ denote all AR model parameters. When p = 1 the likelihood can be calculated via

$$\begin{split} -2\ln(L(\varphi_1|\{Z_t\}_{t=1}^N)) &= \\ N\ln(2\pi) + (N-1)\ln(1-\varphi_1^2) + Z_1^2 + \sum_{t=2}^N \frac{(Z_t - \varphi_1 Z_{t-1})^2}{1-\varphi_1^2}. \end{split}$$

Likelihood Function for X_t

With regard to our observed series $\{X_t\}$, we have the parameters $\theta_F = (\mu, \kappa)$ and $\theta_{AR} = \varphi$. The likelihood is

$$L(\boldsymbol{\theta}_F, \boldsymbol{\theta}_{AR} | \{X_t\}_{t=1}^N) = L(\boldsymbol{\theta}_{AR} | \{Z_t\}_{t=1}^N) |J|,$$

where

$$|J| = \prod_{t=1}^{N} \left| \frac{\partial Z_t}{\partial X_t} \right|.$$

and

$$|J| = (2\pi)^{N/2} \exp\left\{\frac{1}{2}\sum_{t=1}^N \Phi^{-1}(F_{\theta_t}(X_t))^2\right\} \prod_{t=1}^N f_{\theta_t}(X_t).$$

Here, $f_{\theta_t}(X_t)$ is the Beta probability density.

Model Selection

We use penalized likelihood methods to find changepoints in our data.

We set κ and φ to be constant in time, but μ_t can vary by regime.

Bayesian Information Criterion (BIC)

- Well known criteria
- Similar to AIC but prefers simpler models

Minimum Description Length (MDL)

- Based on coding and information theory
- Better models = models with minimal storage
- Each parameter can uniquely be penalized

See Shi et al. [2022] for comparison of these approaches.

Model Selection Details

Two fixed parameters κ and φ , while μ_t can vary by regime.

For m changepoints at times τ_i , there are m+1 regimes.

BIC Objective Function

$$-2\ln(L) + \log(N)(2m+2),$$

MDL Objective Function

$$-2\ln(L) + \frac{\ln(N)}{2} + \sum_{j=1}^{m+1} \frac{\ln(\tau_j - \tau_{j-1})}{2} + \ln(m) + \sum_{j=1}^{m} \ln(\tau_j),$$

where the boundaries $\tau_0 = 0$ and $\tau_{m+1} = N$ are enforced.

Optimization of Penalized Likelihood

A Genetic Algorithm is used to find the optimal BIC and MDL objective functions

- Binary search on N-1 potential change point locations
 - Max iterations 5000, a run of 500 for convergence
 - Mutation probability: 0.1; Crossover probability: 0.8
- Suggestions for initial populations
 - · No change point configuration
 - All single change point configurations
 - Random selection of 2 change point configurations
- Additional regime penalty (minimum regime length 8 years)

See Lund et al. [2025] for more on genetic algorithms and MDL.

Simulation Setup

Six changepoint configurations.

100 Gaussian AR(1) series with $\varphi = 0.3$ are generated, each is used to build Beta series of length N = 100 with the following parameterizations (see (2)).

	Changepoints τ_i	Means μ	Precision κ
1	41	(0.023, 0.030)	500
2	41	(0.023, 0.030)	(400, 700)
3	41,71	(0.023, 0.030, 0.022)	600
4	41,71	(0.023, 0.030, 0.022)	(600, 300, 600)
5	26, 51, 66, 91	(0.021, 0.027, 0.021, 0.029, 0.034)	1500
6	26, 51, 66, 91	(0.021, 0.027, 0.021, 0.029, 0.034)	(500, 600, 700, 1000, 1250)

Simulation Setup Visualized

Simulated Beta marginal time series

Expected value with 2 standard deviation bands provided

Checking Changepoint Accuracy

Two potential sources of misclassification arise:

- the number of changepoints detected
- the changepoint locations.

The changepoint configuration distance from Shi et al. [2022] is used, which compares two changepoint configurations, C_1 and C_2 , having m_{C_1} and m_{C_2} changepoints, respectively.

This distance is defined by

$$d(\mathcal{C}_1, \mathcal{C}_2) = |m_{\mathcal{C}_1} - m_{\mathcal{C}_2}| + \min \left\{ \mathcal{A}(\mathcal{C}_1, \mathcal{C}_2) \right\},\,$$

See Shi et al. [2022] or Lund et al. [2025] for more details.

Simulation Results

Comparison of BIC and MDL penalty structures in change point detection

Back to Baseball

Homerun "Average" during the 'Live Ball' era

Segmentations with 8-year minimum regime length

Fitted Model Comparison

Comparisons of the model fits on baseball homerun 'averages'.

Model	Changepoints τ_i	BIC	MDL	\hat{arphi}_1
Fits assuming iid				
No change points	_	-718.909	-723.563	_
Trend	_	-861.501	-868.482	_
Fits with AR-term				
No changes	_	-911.733	-916.387	0.939
Trend	_	-924.938	-931.919	0.684
BIC Selected	1930, 1948, 1994	-920.537	-938.213	0.474
MDL Selected	1929, 1948, 1956, 1968,	-911.491	-945.628	0.202
	1983, 1995, 2017			

Assessing Model Adequacy

With a set of $\hat{\mu}_t$, $\hat{\kappa}$ and $\hat{\varphi}$ from our fitted model, we can calculate an estimate for the underlying Normal series via equation (1

$$\hat{Z}_t = \Phi^{-1}(F_{\hat{\boldsymbol{\theta}}_t}(X_t)), \quad \text{ where } \hat{\boldsymbol{\theta}}_t = (\hat{\mu}_t, \hat{\kappa})$$

If the model formulation is adequate, the $\{\hat{Z}_t\}$ series should behave as a Gaussian AR(1) process with $\hat{\varphi}$.

We assess can visually and with goodness-of-fit testing (we use Fisher and Gallagher [2012] and Anderson and Darling [1954] tests below).

Assessing Model Adequacy

With a set of $\hat{\mu}_t$, $\hat{\kappa}$ and $\hat{\varphi}$ from our fitted model, we can calculate an estimate for the underlying Normal series via equation (1

$$\hat{Z}_t = \Phi^{-1}(F_{\hat{\boldsymbol{\theta}}_t}(X_t)), \quad \text{ where } \hat{\boldsymbol{\theta}}_t = (\hat{\mu}_t, \hat{\kappa})$$

If the model formulation is adequate, the $\{\hat{Z}_t\}$ series should behave as a Gaussian AR(1) process with $\hat{\varphi}$.

We assess can visually and with goodness-of-fit testing (we use Fisher and Gallagher [2012] and Anderson and Darling [1954] tests below).

Demonstrated on the BIC selected segmented model (four regimes).

Latent Normal Series

Estimated Latent Normal Series

Estimated from BIC-selected Fitted Model

Autocorrelation in Normal Series

Correlograms of Estimated Latent Normal series

Results of Weighted Portmanteau Tests reported

Residual Series

Estimated Residual Series

One-step ahead prediction errors

Autocorrelation in Residual Series

Correlograms of Residuals

Normality of Residual Series

Normal Q-Q Plot of Residuals

-2

Theoretical Quantiles

References

T. W. Anderson and D. A. Darling. A test of goodness of fit. Journal of the American Statistical Association, 49(268):765–769, 1954. URL

https://doi.org/10.1080/01621459.1954.10501232.

Thomas J. Fisher and Colin M. Gallagher. New weighted portmanteau statistics for time series goodness of fit testing. *J. Amer. Statist. Assoc.*, 107(498):777–787, 2012. ISSN 0162-1459. doi: 10.1080/01621459.2012.688465. URL

http://dx.doi.org/10.1080/01621459.2012.688465.

- Robert Lund, Thomas J. Fisher, Norou Diawara, and Michael Wehner. Multiple changepoint detection for non-gaussian time series. *Journal of Time Series Analysis*, n/a(n/a), 2025. URL https://doi.org/10.1111/jtsa.12833.
- Xuesheng Shi, Colin Gallagher, Robert Lund, and Rebecca Killick. A comparison of single and multiple changepoint techniques for time series data. *Computational Statistics & Data Analysis*, 170:107433, 2022. ISSN 0167-9473. URL

https://doi.org/10.1016/j.csda.2022.107433.

Thank You

